
Eddie Kohler

MIT Laboratory for Computer Science
545 Technology Square, Room 521a
Cambridge, ma 02139
USA
+1 617 253 5261

eddietwo@lcs.mit.edu
http://www.pdos.lcs.mit.edu/~eddietwo/

Education
Massachusetts Institute of Technology
PhD in Electrical Engineering and Computer Science (expected)2000
Thesis title: The Click modular router as a system and a programming language
Supervisors: M. Frans Kaashoek and Robert Morris

SM in Electrical Engineering and Computer Science1997
Thesis title: Prolac: a language for protocol compilation
Supervisor: M. Frans Kaashoek

SB in Mathematics with Computer Science1995
SB in Music

Research interests
Computer systems, with specific interests in networking, programming languages, and operating
systems. Also, user interfaces and graphic design.

Experience
Research assistant – MIT LCS Parallel & Distributed Operating Systems Group1995–
Click modular router: Click is an architecture for building routers from modular software compo-
nents. Modern routers are expected to implement a large, changing feature set, from interesting
dropping policies and quality-of-service to firewalling and network address translation. With Click,
a network administrator can implement novel routing features simply by rearranging components.
I co-designed the Click system, created the language Click uses to describe router configurations,
wrote much of the core code of the Click router, and designed and implemented tools that process
Click language files. More information is available at http://www.pdos.lcs.mit.edu/click/.

Prolac protocol language: Prolac is an object-oriented language designed for writing readable, mod-
ular, extensible, and efficient network protocol implementations. I designed the Prolac language,
implemented its compiler, and co-developed a prototype TCP specification in Prolac. I also informally
co-supervised a Prolac-related M.Eng. thesis. More information is available at http://www.pdos.lcs.
mit.edu/~eddietwo/prolac/.

Binary analysis: Developed a sandboxer (which enforces safety properties by rewriting machine code)
for the MIPS architecture, and a live register analyzer for Alpha binaries.

Summer intern – Microsoft Research, Cambridge, England1998
Co-designed and implemented Java prototype for an electronic book. Created a fast algorithm for
text layout supporting arbitrary page designs and both document and user preferences.

Kohler 1 / 3

Consultant – Bitstream, Inc., Cambridge, ma; SightPath, Waltham, ma1996–9
Contract work in software implementation and information design.

Undergraduate research – MIT1992–4
Programming Methodology Group, LCS: Developed a language-based foreign function interface for
clu, and implemented a driver that improved the clu compiler’s performance by up to 40%.

Visible Language Workshop, Media Lab: Implemented graphical user interface objects for the VLW’s
proprietary window system.

Information Services: Co-implemented GUI, network protocol, and back end for an electronic-forms
system.

Free software1991–
Author and maintainer of several widely used free software packages, including PostScript font
manipulators, a GIF animation manipulator, a program that reminds you to take wrist breaks, a game,
a joke, and a graphical instant messaging client used by half to two-thirds of MIT undergraduates.

Teaching experience
Recitation instructor – MIT course 6.821: Programming languages1997
Taught weekly recitation sections to about 25 students. Answered students’ questions, graded prob-
lem sets, led quiz reviews. Taught lecture when Prof. Gifford was absent. Developed course material,
including problem sets, exams, and code (a reconstructor for side effect specifications).

Teaching assistant – MIT course 6.033: Computer system engineering1996
Answered students’ questions, graded reports, led quiz reviews. Assisted students’ writing. Edited
course lecture notes and all other course documents.

Laboratory assistant – MIT course 6.170: Laboratory in software engineering1994–5
Answered students’ online questions.

Publications
Robert Morris, Eddie Kohler, John Jannotti and M. Frans Kaashoek. “The Click modular router.” Proc.
17th ACM Symposium on Operating Systems Principles, Kiawah Island, South Carolina, December
1999, pages 217–231.

This paper was selected as one of four best-in-conference papers at SOSP ’99 and has been selected for
fast-track publication in ACM Transactions on Computer Systems.

Eddie Kohler, M. Frans Kaashoek and David R. Montgomery. “A readable TCP in the Prolac protocol
language.” Proc. ACM SIGCOMM ’99 Conference, Cambridge, Massachusetts, August 1999, pages
3–13.

Eddie Kohler, Massimiliano Poletto and David R. Montgomery. “Evolving software with an application-
specific language.” Workshop Record of WCSSS ’99: 2nd ACM SIGPLAN Workshop on Compiler Support
for Systems Software, Atlanta, Georgia, May 1999, pages 94–102.

Service
Graduate student representative – MIT Committee on Campus Race Relations1998–2000
Helped define areas for the committee to investigate, including minority graduate student admis-
sions.

MIT Dramashop1991–
Served variously as Vice President, Publicity Director, and Publicity Designer for this campus arts
organization. Responsibilities included co-producing shows and extensive graphic design work.

Kohler 2 / 3

Graphic design
Print: Poster and other design for arts organizations in the Boston area, including MIT Dramashop,1993–
Boston Musica Viva, the John Oliver Chorale, and Open City Theater. Much of this work is archived
at http://www.lcdf.org/~eddietwo/design/.

Web: Web site design and implementation for campus organizations and classes, including the Com-
mittee on Campus Race Relations (assistant designer), the LCS Parallel and Distributed Operating
Systems group, Dramashop, the Gay, Lesbian and Bisexual Graduate Student Coffeehouse, and the
6.033 course (computer system engineering).

Other interests
Theater, music, writing, and visual arts. Wrote four one-act plays performed at MIT; acted in others.
Wrote music to accompany a Shakespeare production.

Awards
Frederick C. Hennie III Award1998
Recognizes excellence in teaching by an MIT EECS graduate student.

Kristen E. Finnegan Prize1997
Recognizes contributions of a graduate student to MIT’s effort to improve undergraduate writing
skills.

National Science Foundation Graduate Research Fellowship1996

Laya and Jerome B. Weisner Award1995
Recognizes outstanding achievement in and contributions to the arts at MIT.

Member, Phi Beta Kappa academic honor society

Member, Sigma Xi engineering honor society

References
Prof. David Gifford Prof. M. Frans Kaashoek
MIT Laboratory for Computer Science MIT Laboratory for Computer Science
545 Technology Square, Room 401 545 Technology Square, Room 522
Cambridge, ma 02139, USA Cambridge, ma 02139, USA
+1 617 253 6039 +1 617 253 7149
gifford@lcs.mit.edu kaashoek@lcs.mit.edu

Prof. Barbara Liskov Prof. Robert Morris
MIT Laboratory for Computer Science MIT Laboratory for Computer Science
545 Technology Square, Room 528 545 Technology Square, Room 509
Cambridge, ma 02139, USA Cambridge, ma 02139, USA
+1 617 253 5886 +1 617 253 5983
liskov@lcs.mit.edu rtm@lcs.mit.edu

Dr. Chuck Thacker
Microsoft Research
543 Tennyson Ave
Palo Alto, ca 94301, USA
+1 650 323 9422
cthacker@microsoft.com

Kohler 3 / 3

Statement of Research Interests Eddie Kohler

Many systems today have poor extensibility, flexibility, correctness, and security,
all of which are easier to fix when a system is easy to understand. Understanding
a real, complex software system should be as easy as reading a page or two of code.
This would require high-level comprehension of the system; however, we design
systems with architectures that don’t facilitate higher-level comprehension, and
the tools we use to program, analyze, test, and debug them don’t help either. I
want to create new architectures and tools that will facilitate higher-level compre-
hension and test them on real-world systems. I want to build systems that satisfy
tough performance requirements, but are still flexible and understandable. This
work will combine my interests in systems, programming languages, and software
design with a willingness to rethink the way systems should be built.

As a first approach, I want to treat systems as programming languages, an av-
enue inspired by my graduate school research. In this model, a new programming
language is an integral part of each system. This language specifies system-level
properties, rather than the data layout and control flow issues controlled by lan-
guages like C and C++. Its constructs correspond directly to high-level properties of
the system, which may be different even for two systems in the same domain. (For
example, an operating system language might specify how file systems, network
connections, and other kernel-level objects interact. Different operating systems
would probably have different languages.) A program in the language gives us a
readable, high-level description of the system, and we can manipulate this pro-
gram with language processors to optimize or statically check the system as a
whole.

The first of two projects that inspired this approach is Prolac, an object-oriented
language for network protocol implementation. Prolac was designed to make pro-
tocol implementations readable, modular, extensible, and efficient. It includes
advanced language features, appropriate syntax, tight integration with unforgiving
environments (Unix kernels), and compiler optimizations. Our Prolac TCP imple-
mentation is organized in a new, readable and modular way; for example, each TCP
protocol extension is readably located in one small set of subclasses. The compiler
optimizes most of this organization away, leaving code that performs comparably
to commodity TCPs.

The Prolac language is low-level and detailed, however, which complicates
adoption. Most people don’t want or need to learn another systems programming
language. Therefore, in my next project—the Click modular router—we kept the
programming language higher level, specifying the interaction between compo-
nents rather than the instruction-by-instruction behavior of each component.

Click is an architecture for building software routers from modular components
called elements. Element definitions are written in C++; the Click programming
language specifies how elements should be connected in a particular router. A
router’s high-level behavior is thus exactly determined by its definition in the
Click language. Network administrators can create arbitrary feature combinations

by manipulating easy-to-read Click-language files, rather than by hacking kernel
source code.

Like formal specifications, the Click language can be used to detect errors
statically and to discover global router properties. Unlike formal specifications,
the language compiles into working routers, so people can test and modify the way
their packets are routed by manipulating Click-language files. Programs analogous
to conventional language processors can manipulate these files as well, to optimize
them, analyze them, and so forth. We have written several such programs already: a
pattern-based optimizer that replaces common element arrangements with faster
equivalents; an aligner, which examines a configuration and adds elements to
ensure that packet memory is correctly aligned; and a specializer, which creates
new, faster elements tailored to how the elements in a configuration are actually
being used.

We have implemented the Click architecture on conventional PC hardware
with good results. Click routers are flexible—their configurations can be easily
read, understood, and changed. Already, performance is good enough for many
demanding applications. Furthermore, having the Click language made the core
system better by guiding us towards better internal structures and element designs.

Now I want to expand from these lessons into other systems. While my previous
work has been in networking, my interest in systems is omnivorous. Networking,
operating systems, and distributed applications—particularly over networks of
small devices—all seem like fertile ground for this research. Regardless of area, I
want to build real systems; I believe you learn from interacting with complexity,
and little is more complex than the real world. These new systems probably won’t
be much like Click or Prolac, because they will be tailored for different problems.
Nevertheless, successful system languages may share some basic principles, which
I would like to pin down.

This work is fundamentally interdisciplinary in nature. Building a successful
system language requires expertise in languages, systems in general, and the par-
ticular kind of system being built. I look forward to working in many system areas
through close collaboration with peers and, especially, students.

Statement of Teaching Interests Eddie Kohler

I love learning, and believe it is a responsibility, a privilege, and a joy to teach in
return. My love for learning and teaching is broader than any one field, so much of
this statement is about teaching in general. So far, I have taught classes in program-
ming languages and systems, and would like in future to teach undergraduates or
graduate students in languages, operating systems, networking, and/or elementary
courses. My teaching is driven by flexibility, clarity, and the desire to reach all
students.

At MIT, I have taught informally, as a lab assistant, and twice as a teaching
assistant: for an undergraduate course and a graduate course. My most extensive
teaching experience was the graduate course on programming languages. I taught
recitation (weekly sections with 25 to 30 students) and lecture once or twice when
the professor was out of town; answered students’ questions; led quiz reviews; and
developed course material, including quizzes and code. I was honored with two
awards for the teaching assistantships, one for contributions to students’ writing
skills and one for general excellence.

My goal in teaching is to reach every student. (Many students reported on
evaluations that they “truly believed that [I] cared about their performance in
the course.”) To reach everyone, a teacher must be flexible and provide different
ways to learn the material; then students can choose the ones that work for them.
I concentrate my efforts on clear, intuitive explanations, but let students help
guide the pace and path of my lectures, and use other techniques whenever they
help—from design problems to metaphors to games.

Teaching can also be inspirational, exciting students about computer science
and computer systems. Inspiration, I believe, comes mostly from working on well-
chosen, difficult, and rewarding problems. Lectures are important for providing
intuition, but working on problems is what makes intuition stick; and only solving
problems provides the adrenaline rush of inspiration. I put a lot of effort and
creativity into creating problems and projects that are meant to inspire.

Of course, the most rewarding problems are research problems, and research
and teaching are deeply linked, sharing a concern for the clearest explanation and
the simplest solution. Advising graduate students (and undergraduate researchers)
requires flexibility and excitement, even more than teaching a lecture. But then
the rewards are greater—you end up with a collaborator and a peer.

17th ACM Symposium on Operating Systems Principles (SOSP ’99)
Published as Operating Systems Review 34(5):217–231, December 1999

(reformatted)

The Click modular router

Robert Morris, Eddie Kohler, John Jannotti, and M. Frans Kaashoek
MIT Laboratory for Computer Science
{rtm, eddietwo, j j, kaashoek}@lcs.mit.edu

Abstract

Click is a new software architecture for building flexible
and configurable routers. A Click router is assembled
from packet processing modules called elements. Indi-
vidual elements implement simple router functions like
packet classification, queueing, scheduling, and interfac-
ing with network devices. Complete configurations are
built by connecting elements into a graph; packets flow
along the graph’s edges. Several features make individ-
ual elements more powerful and complex configurations
easier to write, including pull processing, which mod-
els packet flow driven by transmitting interfaces, and
flow-based router context, which helps an element lo-
cate other interesting elements.

We demonstrate several working configurations, in-
cluding an IP router and an Ethernet bridge. These
configurations are modular—the IP router has 16 ele-
ments on the forwarding path—and easy to extend by
adding additional elements, which we demonstrate with
augmented configurations. On commodity PC hardware
running Linux, the Click IP router can forward 64-byte
packets at 73,000 packets per second, just 10% slower
than Linux alone.

1 Introduction

Routers are increasingly expected to do more than route
packets. Boundary routers, which lie on the borders be-
tween organizations, must often prioritize traffic, trans-
late network addresses, tunnel or filter packets, or act as
firewalls, among other things. Furthermore, fundamen-
tal router policies like packet dropping are still under

This research was supported by a National Science Foundation (NSF)
Young Investigator Award and the Defense Advanced Research Projects
Agency (DARPA) and Rome Laboratory under agreement number
F30602-97-2-0288. In addition, Eddie Kohler was supported by a Na-
tional Science Foundation Graduate Research Fellowship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage, and
that copies bear this notice and the full citation on the first page. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

SOSP-17 12/1999 Kiawah Island, SC

c© 1999 ACM 1-58113-140-2/99/0012 . . . $5.00

active research [5, 11, 13], and initiatives like Differen-
tiated Services [3] are bringing the need for flexibility
closer to the core of the Internet.

Unfortunately, most routers have closed, static, and
inflexible designs. Network administrators may be able
to turn router functions on or off, but they cannot easily
specify or even identify the interactions of different func-
tions. Furthermore, network administrators and third
party software vendors cannot easily implement new
functions. Extensions require access to software inter-
faces in the router’s forwarding path, but these often
don’t exist, don’t exist at the right point, or aren’t pub-
lished.

This paper presents Click, a flexible, modular software
architecture for building routers. Click’s building blocks
are packet processing modules called elements. To build
a router configuration, the user connects a collection of
elements into a graph; packets move from element to ele-
ment along the graph’s edges. To extend a configuration,
the user can write new elements or compose existing ones
in new ways, much as UNIX allows one to build com-
plex applications directly or by composing simpler ones
using pipes.

Two specific features add power to this simple archi-
tecture. Pull processing models packet motion driven by
transmitting interfaces and makes packet schedulers easy
to compose, and flow-based router context examines the
router graph to help an element locate other interesting
elements. We present an element in Section 4.2 that, using
these features, implements four variants of the random
early detection dropping policy (RED) [11]—RED, RED
over multiple queues, weighted RED, and drop-from-
front RED—depending on its context in the router. This
would be difficult or impossible to achieve in previous
modular networking systems [12, 18, 25].

We have implemented this architecture on general-
purpose hardware (which is cheap and has good per-
formance) as an extension to Linux. A Click IP router
running on a 450 MHz Pentium III can forward 73,000
64-byte packets per second, and can forward 250-byte
packets (the average size seen on WAN links [28]) at
100 megabits per second.

In the next sections, we describe Click’s architecture in
detail, including the language used to describe configu-
rations (Section 2), present a functioning Click IP router

(Section 3), and outline some useful router extensions as
implemented in Click (Section 4). After summarizing our
implementation (Section 5), we evaluate its performance
on some of the presented routers (Section 6). Finally,
we describe related work (Section 7) and summarize our
conclusions (Section 8).

2 Architecture

A Click router configuration is a directed graph whose
nodes are called elements. A single element represents
a unit of router processing. An edge, or connection, be-
tween two elements represents a possible path for packet
transfer. This graph resembles a flowchart, except that
connections represent packet flow, not control flow, and
elements are actual objects that may maintain private
state. Inside a running router, each element is a C++ ob-
ject and connections are pointers to elements. The over-
head of passing a packet along a connection is a single
virtual function call.

The most important properties of an element are:

• Element class. Like objects in an object-oriented
program, each element has a class that determines
its behavior.

• Input and output ports. Ports are the endpoints of
connections between elements. An element can have
any number of input or output ports, which can
have different semantic meanings (a normal and an
error output, for example).

• Configuration string. Some element classes support
additional arguments, used to initialize per-element
state and fine-tune element behavior. The configura-
tion string contains these arguments.

Figure 1 shows how we diagram these properties for a
single element, Tee(2). ‘Tee’ is the element class; a Tee
copies each packet it receives from its single input port,
sending one copy to each output port. (The packet data is
not copied: Click packets are copy-on-write.) Configura-
tion strings are enclosed in parentheses: the ‘2’ in ‘Tee(2)’
is a configuration string that Tee interprets as a request
for two outputs.

Every action performed by a Click router’s software
is encapsulated in an element, from device reading and
writing to queueing, routing table lookups, and counting
packets. The user determines what a Click router does
by choosing the elements to be used and the connections
among them. Figure 2 shows a sample router that counts
incoming packets, then throws them all away.

Click provides two kinds of connections between ele-
ments, push and pull. In a push connection, the upstream
element hands a packet to the downstream element; in

Tee(2)input port output ports

element class

configuration string

Figure 1: A sample element. Triangular ports are inputs and rectan-

gular ports are outputs.

FromDevice(eth0) Counter Discard

Figure 2: A router configuration that throws away all packets.

a pull connection, the downstream element asks the up-
stream element to return a packet. Each kind of handoff
is implemented as a virtual function call. Packet arrival
usually initiates push processing, which stops when an
element discards the packet or stores it for later. Output
interfaces initiate pull processing when they are ready
to send a packet; processing flows backwards through
the graph until an element yields up a packet. Pull ele-
ments can simply and explicitly represent decisions that
should occur at packet transmission time, such as packet
scheduling.

The rest of this section discusses the Click architecture
in more detail, including push and pull processing, flow-
based router context, the implementation of an element,
and the Click language for specifying router configura-
tions.

2.1 Control flow and queues

When an element receives a packet from a push con-
nection, it must store it, discard it, or forward it to an-
other element for more processing. Most elements for-
ward packets by calling the next element’s push func-
tion. Since packet handoff is just a virtual function call,
a Click CPU scheduler could not stop packet processing
at arbitrary points—elements must cooperatively choose
to stop processing.

Packet storage must be implemented by the element it-
self; unlike some systems [18, 25], Click elements do not
have implicit queues on their input and output ports,
or the associated performance and complexity costs. In-
stead, Click queues are explicit objects, implemented by
a separate element (Queue). This enables valuable con-
figurations that are difficult to arrange otherwise—for
example, a single queue feeding multiple interfaces, or
a queue feeding a traffic shaper on the way to an in-
terface. Queue is the most common element that stops
packet processing, giving the system a chance to sched-
ule different work: it enqueues packets it receives rather

2

FromDevice Null Null ToDevice

push(p) push(p)

return
return

pull()
pull()

return p return p

receive
packet p

enqueue p
transmit
complete
interruptdequeue p

and return it

send p

Figure 3: Push and pull control flow. This diagram shows functions

called as a packet moves through a simple router. The central el-

ement is a Queue. During the push, control flow moves forward

through the element graph starting at the receiving interface; during

the pull, control flow moves backward through the graph, starting

at the transmitting interface. The packet p always moves forward.

than passing them on. Thus, the placement of Queues
in a configuration determines that configuration’s execu-
tion profile. If a user wants to carefully manage packet
scheduling as soon as packets enter the system, she will
want Queues early in the graph.

2.2 Push and pull processing

Push and pull are duals of one another: the upstream
end of a connection initiates a push call, while the
downstream end initiates a pull call. Together, push and
pull allow the appropriate end of a connection to initi-
ate packet transfer, solving several router control flow
problems. For example, packet scheduling decisions—
choosing which queue to ask for a packet—are easily
expressed as composable pull elements, as we show in
Section 4.1. As another example, the system should not
send packets to a busy transmitting interface. If it did, the
interface would have to store the packet, and the router
would lose the ability to affect it later (to throw it away,
to modify its precedence, and so forth). This restriction
can be simply expressed by giving the transmitting inter-
face a pull input; then the interface is in control of packet
transfer, and can ask for packets only when it’s ready.

Figure 3 shows how this works in a simple router. In
our configuration diagrams, black ports are push and
white ports are pull. This particular configuration has
two Null elements, one push and one pull. Like many
elements, Null is agnostic, meaning it can work as either
push or pull depending on its context in the router. Ag-
nostic ports are shown in diagrams as push or pull ports
with a double outline.

The following invariants hold for all correctly config-
ured routers: Push outputs must be connected to push
inputs, and pull outputs must be connected to pull in-
puts. Each agnostic port must be used as push or pull
exclusively; furthermore, if packets can flow within an
element between an agnostic input and an agnostic out-

FromDevice

FromDevice

ToDevice
Counter

ToDevice

Figure 4: Some invariant violations. The top configuration has four

errors: (1) FromDevice’s push output connects to ToDevice’s pull in-

put; (2) more than one connection to FromDevice’s push output; (3)

more than one connection to ToDevice’s pull input; and (4) the ag-

nostic element Counter is in a mixed push/pull context. By contrast,

the bottom configuration is legal. In a properly configured router, the

port colors on either end of each connection will match.

put, both ports must be used in the same way (either push
or pull). Finally, push outputs and pull inputs must be
connected exactly once. (This ensures that each packet
handoff—pushing to an output port or pulling from an
input port—has a unique destination.) These invariants
are automatically checked by the system during router
initialization. Figure 4 demonstrates violations of each
of them.

The invariants are designed to catch intuitively invalid
configurations. For example, in Figure 4, the connection
in the figure from FromDevice to ToDevice is disallowed
by the invariants because FromDevice’s output is push
while ToDevice’s input is pull. But this connection should
be illegal: if it remained, ToDevice might receive packets
when it was not ready to send them. The Queue element,
which converts from push to pull, is also intuitively nec-
essary to provide the temporary packet storage required.

Every push call in a running router passes an actual
packet object, but pull calls can return a null pointer
if no packet is ready. In this case, the pulling element
must arrange to wake up when it makes sense to try
again. This can be done element-specifically—using a
timer, for example—but Click also includes a generic
mechanism called packet-upstream notification. During
initialization, each Queue uses flow-based router con-
text (described in more detail below) to find the elements
downstream of it that are interested in packet-upstream.
When the Queue becomes nonempty, it notifies these el-
ements of a packet-upstream event; they will soon react
by retrying the pull. The combination of pull process-
ing and packet-upstream notification resembles Clark’s
upcalls and arming calls [7].

2.3 Flow-based router context

Sometimes an element must find other elements that
might not be directly connected to it. For example, a
Queue must find the elements downstream of it that are
interested in packet-upstream notification; these might

3

RED Classifier Discard

PullToPush

Strip

Figure 5: The elements downstream of RED, found by flow-based

router context with a filter that stops at Queues. The downstream

elements are colored grey.

be directly connected to the Queue, or they might be
separated from it by arbitrarily many elements. They are
related to the Queue not by direct connection, but by its
transitive closure, packet flow.

The Click architecture can provide any element with
packet flow information for the whole router, which we
call flow-based router context. For example, an element
can find the elements downstream of its first output, or
the elements upstream of its second input. These ques-
tions have a well-defined answer even in the presence of
cycles in the router configuration.

The flow-based router context algorithms accept an
optional filter that limits the search. If the filter matches
an element on a downstream search, then nothing down-
stream of that element will be returned (unless it is
reachable on another path), and similarly for upstream
searches. Filters can match arbitrary element classes and
interfaces, so searches can be stopped at Queues (and
subtypes of Queue) or at any element implementing a
hypothetical Queuelike interface. Figure 5 shows how
this works. With these filters and flow-based router con-
text, an element can find nearby elements that are known
to implement a specific interface; it can then manipulate
their exported variables and methods, gaining access to
information like queue lengths, interface addresses, and
so on.

2.4 Implementation

We implement elements as C++ objects. Each element
class corresponds to a C++ subclass of Element, which
has on the order of 20 virtual functions. Element pro-
vides reasonable default implementations for many of
these, allowing most subclasses to get away with over-
riding six of them or less. Only two virtual functions are
used during router operation, namely push and pull; the
others are used for identification, push and pull specifi-
cation, configuration, initialization, and statistics.

Subclasses of Element are easy to write, so we expect
users will have no problem writing new element classes
as needed. In fact, the complete implementation of a
simple working element class (Null, which passes packets

class NullElement : public Element {
public:
NullElement()

{ add_input(); add_output(); }
const char *class_name() const

{ return "Null"; }
PushOrPull default_processing() const

{ return AGNOSTIC; }
NullElement *clone() const

{ return new NullElement; }
void push(int port_number, Packet *p)

{ output(0).push(p); }
Packet *pull(int port_number)

{ return input(0).pull(); }
};

Figure 6: The complete implementation of a do-nothing element.

from its single input to its single output unchanged) takes
less than 20 lines of code; see Figure 6. Most elements
define functions for parsing configuration strings and
initialization in addition to those in Figure 6, and take
about 120 lines of code.

2.5 Language

Click configurations are written in a simple textual
language with two important constructs: declarations
and connections. A declaration says that an element
should be created; connections specify how those el-
ements should be connected. Syntactic sugar allows a
user to elide declarations and piggyback connections for
readability. The syntax is easy enough to learn from an
example; Figure 7 uses it to define a trivial router.

Configuration strings are opaque to the language.
They are sent uninterpreted to the elements themselves,
which are free to use them however they like. Most of
the elements we have written treat configuration strings
as comma-separated argument lists, using a common li-
brary to parse data like integers and IP addresses.

The language contains constructs that allow users to
define new element classes by composing existing ones.
Thus, any user can create a library of personalized ele-
ment classes; for example, a user could define MyQueue
to be a Queue followed by a Shaper, and use MyQueue
as if it was a Click primitive. These new classes, called
compound elements, are strictly compile-time constructs:
at run time, a compound element has exactly the same
representation as the corresponding collection of simple
elements. Thus, compound elements have no additional
run-time overhead.

Router configurations in the Click language can be
optimized using a preprocessor based on pattern match-
ing. The optimizer reads a router configuration and a

4

a trivial router that drops everything
src :: FromDevice(eth0);
ctr :: Counter;
sink :: Discard;
src -> ctr;
ctr -> sink;

the same, with anonymous elements
FromDevice(eth0) -> Counter -> Discard;

Figure 7: The trivial router of Figure 2 specified in two ways.

file describing element patterns and their replacements;
it replaces patterns in the configuration until no more
changes can be made, then writes out the new configu-
ration. We plan to write other preprocessors, including
one that checks configurations using a static type system.
This would prevent users from sending Ethernet packets
to elements that expect IP packets, for example. Cur-
rently, Click configurations are not type checked, except
for the push and pull invariants described above.

3 An IP router

This section shows how a real router configuration—
an IP router that forwards unicast packets in nearly full
compliance with the standards [1, 23, 24]—can be writ-
ten in Click. Figure 8 shows a two-interface Click IP
router configuration. (The reader may want to refer to
Figure 9, a glossary of Click elements used in Figure 8 and
elsewhere in the paper.) The rest of this section describes
the IP router in more detail. Section 4 shows how to ex-
tend this router by changing its scheduling and queueing
behavior, and Section 6 evaluates its performance.

The IP forwarding tasks that are most natural in Click
are those that involve only local information. For exam-
ple, DecIPTTL decides if a packet’s TTL has expired.
If it has, it emits the packet on its second output (usu-
ally connected to an ICMPError element); if the TTL is
still valid, DecIPTTL decrements it, updates the packet’s
checksum, and emits the packet on its first output. These
actions depend only on the packet’s contents; they don’t
interact with decisions made elsewhere except as ex-
pressed in the packet’s path through the element graph.
Such self-contained elements compose easily—for exam-
ple, one could connect DecIPTTL’s “expired” output to
a Discard to avoid generating ICMP errors, or insert an
element that limits the rate at which errors are generated.

Some forwarding tasks require that information about
a packet be calculated in one place and used in another.
Click uses annotations to carry such information along.
(An annotation is a piece of information attached to a
packet that isn’t part of the packet data.) The annotations
used in the IP router include:

FromDevice(eth0) FromDevice(eth1)

Classifier(...) Classifier(...)

ARPQuerier(2.0.0.1, ...)

ToDevice(eth0)

ARPQuerier(1.0.0.2, ...)

ToDevice(eth1)

ARPResponder
(2.0.0.1, ...)

ARPResponder
(1.0.0.2, ...)

IPGWOptions(2.0.0.1)

IPFragmenter(1500)

DecIPTTL

FixIPSrc(2.0.0.1)

CheckPaint(1)

DropBroadcasts

ICMPError
redirect

ICMPError
bad param

ICMPError
TTL expired

ICMPError
must frag

IPGWOptions(1.0.0.2)

IPFragmenter(1500)

DecIPTTL

FixIPSrc(1.0.0.2)

CheckPaint(2)

DropBroadcasts

ICMPError
redirect

ICMPError
bad param

ICMPError
TTL expired

ICMPError
must frag

Paint(1) Paint(2)

Strip(14)

CheckIPHeader(...)

GetIPAddress(16)

LookupIPRoute(...)

ARP
queries

ARP
responses IP

ARP
queries

ARP
responses IP

to Queue to Queueto ARPQuerier to ARPQuerier

from Classifier from Classifier

to Linux

Figure 8: The IP router configuration.

5

Element Description
ARPQuerier(...) Encapsulates IP packets in Ethernet headers using ARP; 2nd input processes ARP responses
ARPResponder(x y) Responds to ARP queries for IP address x with static Ethernet address y
CheckIPHeader(...) Discards packets with invalid IP length or checksum fields
CheckPaint(p) Sends packets with paint annotation = p to both outputs; otherwise just to first
Classifier(...) Checks packet data against classifiers; sends packet to output for 1st classifier that matched
DecIPTTL Decrements IP packets’ time-to-live; sends to 2nd output iff TTL has expired
Discard Discards all packets
DropBroadcasts Discards packets that arrived as link-level broadcasts
EtherSpanTree(...) Implements the IEEE 802.1d spanning tree algorithm for Ethernet switches
EtherSwitch Learning, forwarding Ethernet switch
FixIPSrc(addr) Sets the IP header’s source field to addr if the Fix IP Source annotation is set
FromDevice(device) Outputs packets when they arrive from a Linux device driver
GetIPAddress(...) Copies the destination address from the IP header to the destination address annotation
HashDemux(...) Sends packet to one of n outputs, chosen by a hash of specified packet contents
ICMPError(type, code) Encapsulates IP packets in ICMP error packets, sets Fix IP Source annotation
IPEncap(...) Encapsulates packets in a statically specified IP header
IPFragmenter(mtu) Fragments IP packets larger than mtu; too-large packets with DF flag set go to 2nd output
IPGWOptions Handles IP Record Route, Timestamp options; packets with invalid options go to 2nd output
LookupIPRoute Looks up the destination annotation in a static routing table, choosing the output and setting

the annotation based on the result
Meter(r) Sends packets to 1st output if recent input rate averages < r, 2nd output otherwise
Paint(p) Sets the paint annotation to p
PrioSched Pulls a packet from one of n inputs; lower numbered inputs have priority
Queue(n) Stores at most n packets in a queue
RED(...) Drops packets probabilistically according to the Random Early Detection algorithm
RoundRobinSched Pulls a packet from one of n inputs, chosen by round-robin
SetIPDSCP(c) Sets the IP header’s diffserv code point field to c
Shaper(n) Simple pull traffic shaper: allows average of n packets per second
Strip(n) Deletes packets’ first n bytes
Suppressor Optionally drops packets arriving on particular inputs
Tee(n) Sends each packet to all n outputs
ToDevice(device) Hands packets to a Linux device driver for transmission
ToLinux Hands packets to Linux’s default network input software

Figure 9: Element glossary.

• Destination address. Elements that deal with a
packet’s destination address use this annotation
rather than the IP header field, allowing several
such elements to be chained together. GetIPAddress
copies the destination field from the IP header to
the annotation, LookupIPRoute replaces the an-
notation with the next-hop gateway’s address, and
ARPQuerier maps the annotation to the next-hop
Ethernet address.

• Paint. The Paint element marks a packet with an in-
teger “color”. CheckPaint emits every packet on its
first output, and a copy of any packet with a given
color on its second output. The IP router uses paint
to decide whether a packet is leaving the same in-
terface on which it arrived, and thus should prompt
an ICMP redirect.

• Link-level broadcast flag. FromDevice sets this flag
on packets that arrived as link-level broadcasts. The
IP router uses DropBroadcast to drop such packets
if they are about to be forwarded, but not if they are
destined for the router itself.

• ICMP Parameter Problem pointer. This is set by IP-
GWOptions on erroneous packets to specify the bad
IP header byte, and used by ICMPError when con-
structing an error message.

• Fix IP Source flag. The IP source address of an ICMP
error packet must be the address of the interface on
which the error is sent. ICMPError can’t predict this
interface, so it uses a default address and sets the Fix
IP Source annotation. After the ICMP packet has
been routed towards a particular interface, a FixIP-

6

Src on that path will see the flag, insert the correct
source address, and recompute the IP checksum.

In a few cases elements require information of an in-
conveniently global nature. A router usually has a sep-
arate IP address on each attached network, and each
network usually has a separate IP broadcast address. All
of these addresses need to be known at multiple points in
the Click configuration: LookupIPRoute needs to know
how to decide if a packet is destined to the router itself,
CheckIPHeader must discard a packet with any of the IP
broadcast addresses as source address, ICMPError must
suppress responses to IP broadcasts, and IPGWOptions
must be able to recognize any of the router’s addresses
in an IP Timestamp option. Each of these elements takes
the complete list of addresses as part of its configuration
string, but ideally they would derive the list automati-
cally using flow-based router context.

Some of the elements in Figure 8 require more ex-
planation. CheckIPHeader checks the validity of the IP
length fields, the IP source address, and the IP check-
sum. IPGWOptions processes just the Record Route
and Timestamp options, since the source route options
should be processed only on packets addressed to the
router. IPFragmenter normally fragments packets larger
than the configured MTU, but sends unfragmentable too-
large packets to an error output instead. An ICMPError
element encapsulates most input packets in an ICMP er-
ror message and outputs the result; it drops broadcasts,
ICMP errors, fragments, and source-routed packets.

4 Extensions

This section presents Click configuration fragments that
implement several useful router extensions. We have
written elements that support RFC 2507-compatible
IP header compression and decompression, IP secu-
rity, communication with wireless radios, tunneling, and
many other specialized routing tasks, but this section fo-
cuses on scheduling and dropping policies, queueing re-
quirements, and Differentiated Services—and one non-IP
router, an Ethernet switch. The last subsection concludes
the discussion by presenting some of Click’s architectural
limitations.

4.1 Scheduling

With pull processing, a packet scheduler can be im-
plemented in Click as a single element that maintains
only local knowledge of the router configuration. Packet
scheduling is a kind of multiplexing—a scheduler decides
how a number of packet sources (usually queues) will
share a single output channel—and a Click scheduler is
a pull element with multiple inputs and one output. It re-
acts to requests for packets by choosing one of its inputs,

HashDemux RoundRobin...

Figure 10: A virtual queue implementing Stochastic Fairness

Queueing.

pulling a packet from it, and returning it. (If the chosen
input has no packets ready, the scheduler will usually try
other inputs.)

We have implemented two scheduler elements, Round-
RobinSched and PrioSched. RoundRobinSched pulls
from its inputs in round-robin order, returning the first
packet it finds (or no packet, if no input has a packet
ready). It always starts pulling on the input cyclically
following the last successful pull. PrioSched (for priority
scheduler) always tries its first input, then its second, and
so forth, returning the first packet it gets.

Both Queues and scheduling elements have a sin-
gle pull output, so to an element downstream, Queues
and schedulers are indistinguishable. We can exploit this
property to build virtual queues, compound elements
that look exactly like queues from the outside but im-
plement more complex behavior than FIFO queueing.
Figure 10 shows a virtual queue that implements a ver-
sion of Stochastic Fairness Queueing [15]: packets are
hashed by flow identifier into one of several queues that
are scheduled round-robin, providing some isolation be-
tween competing flows.

4.2 Dropping policies

The Queue element implements a simple dropping pol-
icy, namely a configurable maximum length beyond
which all packets are dropped. More complex drop poli-
cies can be created by combining Queues with other
elements. For example, we implement random early de-
tection [11] as an independent RED element contain-
ing only drop decision code. RED bases its decisions
on queue lengths—specifically, the lengths of the near-
est downstream Queues, which it finds using flow-based
router context. For example, in Figure 5 above, RED will
include the grey Queues in its queue length calculation.

If there is more than one downstream Queue, RED
adds all their lengths together before performing the drop
calculation. This simple generalization allows the user
to create useful RED variants like RED over multiple
queues by rearranging the configuration. Other variants
like weighted RED [5], where packets are dropped with
different probabilities depending on their priority, also
naturally follow from modular RED elements (see Fig-
ure 11). In addition, the RED element can be positioned
after the queue; in this case, it is a pull element and looks

7

r1 :: RED

r2 :: RED

r3 :: RED

Classifier
prio 1

prio 2

prio 3

Figure 11: Weighted RED. The three RED elements can have differ-

ent RED parameters, allowing packets with different priorities to be

dropped with different probabilities when the router is under stress.

for upstream rather than downstream queues. This re-
sults in a strategy like drop-from-front [13], which re-
ports congestion back to senders more quickly than the
usual drop-from-tail.

4.3 Complex queueing

Imagine a router with the following requirements:

• two parallel T1 links to a backbone, between which
traffic should be load-balanced;

• division of traffic into two priority levels;

• fairness among the connections within each priority
level;

• RED dropping driven by the total number of packets
queued.

Figure 12 shows how to build this combination in Click.
Other router platforms provide these features individu-
ally, and perhaps in certain predefined combinations; in
Click, since the configuration consists of simple elements
composed together, many other configurations could be
built by rearrangement or by choosing different elements.

4.4 Differentiated Services

The Differentiated Services architecture [3] specifies
mechanisms for border and core routers to jointly man-
age aggregate traffic streams. Diffserv border routers
classify and tag packets according to traffic type, and
ensure that traffic enters the network no faster than al-
lowed. Core routers queue and schedule packets based
on their tags. The diffserv architecture envisions flexible
combinations of classification, tagging, shaping, drop-
ping, queuing, and scheduling functions. These compo-
nents naturally correspond to Click elements, and build-
ing them as elements gives the router administrator full
control over how they are arranged. For example, Fig-
ure 13 shows a Click configuration corresponding closely
to Figure 4 (“An Example Traffic Conditioning Block”)
in Bernet et al [2].

RED

Classifier

HashDemux

RoundRobin...

HashDemux

RoundRobin...

PrioSched

ToDevice(...) ToDevice(...)

high priority low priority

Figure 12: A complex combination of dropping, queueing, and

scheduling. The Classifier prioritizes input packets into two virtual

queues, each of which implements stochastic fair queueing (see

Figure 10). PrioSched implements priority scheduling on the virtual

queues, preferring packets from the left. The router is driving two

equivalent T1 lines that pull packets from the same sources, pro-

viding a form of load balancing. Finally, RED, at the top, implements

random early drop over all four Queues.

This configuration separates incoming traffic into 4
streams, based on the IP Differentiated Services Code
Point (DSCP) [20]. The first three streams are rate-
limited, while the fourth represents normal best-effort
delivery. The rate-limited streams are given priority over
the normal stream. From left to right in Figure 13, the
streams are (1) limited by dropping—whenever more
than 7500 packets per second are being sent on aver-
age, the stream is dropped; (2) shaped—at most 10,000
packets per second are allowed through the Shaper,
and any excess packets are queued; and (3) limited
by reclassification—whenever more than 12,500 pack-
ets per second are being sent, the stream is reclassified
as best-effort delivery and sent into the lower priority
queue.

4.5 Ethernet switch

The Click system is flexible enough to handle appli-
cations other than IP routing. For example, Figure 14
shows a functional Click configuration for an IEEE
802.1d-compliant Ethernet switch. It acts as a learn-

8

Classifier(...)

Meter(7500)

D
iscard

Shaper(10000)

Meter(12500)

RoundRobin...

PrioSched

SetIP
D

SC
P

(4)

ToDevice(eth0)

1 2 3 4

Figure 13: A sample traffic conditioning block. Meters and Shapers

measure traffic rates; they are available in varieties that measure

bytes per second or packets per second. This example uses pack-

ets per second. 1, 2, 3, and 4 represent DSCP values.

ing bridge and participates with other 802.1d-compliant
bridges to determine a spanning tree for the network,
eliminating cycles in the LAN graph. The central element,
EtherSwitch, can be used alone as a simple, functional
learning bridge. The other infrastructure in the figure—
EtherSpanTree and the two Suppressors—is necessary
only to avoid cycles when multiple bridges are used in a
LAN.

EtherSpanTree implements the IEEE 802.1d protocol
for constructing a LAN-wide spanning tree. At a given
switch, forwarding only occurs among the ports that lie
on the spanning tree. EtherSpanTree controls the learn-
ing and forwarding behavior of EtherSwitch using two
generic Suppressor elements. Suppressor normally for-
wards packets from each input to the corresponding out-
put, but it exports methods to suppress and unsuppress
individual ports; packets arriving on a suppressed port
are dropped. EtherSpanTree uses the Suppressors to pre-
vent the EtherSwitch from learning from or forwarding
to inappropriate ports. The relevant Suppressors can-
not be found using flow-based router context, so the
user must currently specify the Suppressors by name in
EtherSpanTree’s configuration string.

FromDevice(eth0) FromDevice(eth1)

Classifier(...) Classifier(...)

ToDevice(eth0) ToDevice(eth1)

802.1d other 802.1d other

EtherSpanTree(...)

in :: Suppressor

out :: Suppressor

s :: EtherSwitch

Figure 14: The Ethernet switch configuration.

4.6 Limitations

A Click user will generally prefer small elements like
DecIPTTL to large ones like EtherSpanTree, since small
elements can be rearranged to create arbitrary configu-
rations. However, Click’s reliance on packet flow as an
organizational principle means that small elements are
not appropriate for all problems. Particularly, large el-
ements are required when control or data flow doesn’t
match the flow of packets: the control flow required to
process a protocol like 802.1d is too complex to split
into elements.

This also makes it difficult to implement shared ob-
jects that don’t participate in packet forwarding, such as
routing tables. In the configurations shown in this paper,
each routing table is encapsulated in a single packet-
forwarding element, which is its sole user. We plan to
investigate other ways to accommodate shared objects,
perhaps by using something like Scout’s typed ports [18].

We have not yet fully investigated how to schedule
CPU time among competing push and pull paths, a prob-
lem that arises whenever multiple devices simultaneously
receive or are ready to send packets. Currently, Linux
handles much of this scheduling, and the work list de-
scribed in the next section controls the rest. Eventually
all of it should be controlled by a single mechanism.

9

5 Implementation

This section describes details of the Click implementa-
tion, including how Click coexists with a Linux kernel.
The implementation consists of about 17,000 non-blank
lines of C++ code. The code compiles into about 145,000
bytes of i386 instructions in the form of a loadable Linux
kernel module. (Click can also be compiled as a user-
level program that communicates with the network us-
ing BPF [14].) A simple element’s push or pull function
compiles into a few dozen i386 instructions.

5.1 System components

A running Click router contains five important object
classes: elements, a router, packets, timers, and a work
list.

• Elements. The system contains an element object for
each element in the current configuration, as well as
prototype objects for every kind of primitive element
that could be used.

• Router. The single router object collects informa-
tion relevant to a given router configuration, and
is mostly used at initialization time. It configures
the elements, checks that connections are valid, and
puts the router on line. The router breaks the ini-
tialization process into stages, making it possible to
allow cyclic configurations without enforcing any
initialization order on the graph. In the early stages,
elements can set object variables, add and remove
ports, and change whether they are push or pull. In
later stages, they can check their connections and
query flow-based router context. Errors can be re-
ported at any stage.

The most complex part of initialization is dealing
with push and pull. The router checks the invari-
ants and assigns agnostic ports their final push-or-
pull status in a single step. Agnostic ports cause
the problem: global context is necessary to deter-
mine what an agnostic port should be, since arbi-
trary numbers of agnostic elements can be strung
together. If the router decides that one of a string
of agnostic elements is push, that constraint must
propagate through the entire string.

• Packets. Click packet data is copy-on-write—when
copying a packet, the system copies the packet
header but not the data. Annotations are stored in
the packet header in a fixed static order; there is
currently no way to dynamically add a new kind of
annotation. In the Linux kernel, Click packet objects
are equivalent to sk_buffs (Linux’s packet abstrac-
tion).

• Timers. Some elements use timers to keep track of
periodic events. In the Linux kernel, Linux timer
queues are used, which on Intel PCs have .01-second
resolution.

• Work list. A lightweight work list can be used to
schedule Click elements for later processing. It is
effectively a simple, single-priority CPU scheduler,
and is run after every 8th input packet or when-
ever there are no more input packets. Queues and
Shapers currently use the work list to delay packet-
upstream notification (Section 2.2). This improves
i-cache performance: under high load, 8 packets will
be enqueued before the work list is run and pull pro-
cessing begins.

5.2 Linux kernel environment

The Linux networking code passes control to Click at
one of three points: when a packet arrives, when a net-
work interface becomes ready to send another packet, or
when a timer expires. Small changes to the kernel were
necessary to gain access to packet arrival and interface-
ready events. In all cases Linux runs Click code in a
bottom-half handler; bottom halves execute functions
that are too substantial to run during an interrupt, but
are not naturally associated with any user process. Linux
ensures that at most one bottom half is active at a time,
so element code need not be reentrant. Interrupts ordi-
narily take precedence over bottom halves, which always
take precedence over user processes. This organization
follows Linux’s own networking code (allowing a fair
comparison), but has performance implications detailed
in Section 6. We plan to implement a polling architecture
for future work.

When a Linux network device receives a packet, the
device hardware copies the packet into a Linux packet
buffer and interrupts. The Linux device interrupt code
appends the buffer to an input queue of packets wait-
ing to be processed, then allocates a buffer for the next
packet and wakes up the bottom half. When a Click
router is online, this bottom half passes packets from the
input queue directly to the appropriate FromDevice ele-
ment, bypassing normal Linux network processing. The
FromDevice then pushes each packet through the ele-
ment graph. The push processing typically stops when
the packet is enqueued at a Queue.

At some point an output hardware device will inter-
rupt to indicate that it can send more packets. The Linux
interrupt code wakes up the bottom half, which calls the
appropriate ToDevice element. The ToDevice initiates a
pull call which makes its way to the Queue. The ToDe-
vice passes the pulled packet directly to the Linux device
driver’s output routine, avoiding Linux’s output queues.

10

The Click kernel module uses Linux’s /proc filesys-
tem to communicate with user processes. To bring a
router online, you create a configuration description in
the Click language and write it to /proc/click/config.
Reading this file returns the current configuration, and
writing subsequent descriptions causes the configuration
to change on the fly. When a router is active, a directory
is created under /proc/click for each element in its con-
figuration. Elements can easily add read and write access
points to their directories; we use this interface to provide
access to statistics like packet counts and queue lengths,
and to make parameters like maximum queue lengths
and RED probabilities reconfigurable at run time.

6 Evaluation

Click’s performance goals are to forward packets quickly
enough to keep typical access links busy, to impose a
low cost for incremental additions to configurations, and
to correctly implement complex behaviors like packet
scheduling. This section demonstrates that Click meets
these goals.

6.1 Experimental setup

The experimental setup consists of three Intel PCs run-
ning Linux 2.2.10: a source host, the router being tested,
and a destination host. The router has two 100 Mbit
Ethernet cards connected, by point-to-point links, to the
source and destination hosts. During a test, the source
generates an even flow of UDP packets addressed to the
destination; the router is expected to get them there.

The router hardware is a 450 MHz Intel Pentium III
CPU, an Intel 440BX PCI chip set, 256 megabytes of
SDRAM, and two DEC 21140 100 Mbit PCI Ethernet
controllers. The Pentium III has a 16 KB L1 instruction
cache, a 16 KB L1 data cache, and a 512 KB L2 uni-
fied cache. The source host has a 300 MHz Pentium II
CPU and a DEC 21140 Ethernet controller. The destina-
tion host has a 200 MHz PentiumPro CPU and an Intel
EtherExpress 10/100 Ethernet controller. The source-to-
router and router-to-destination links are point-to-point
full-duplex 100 Mbit Ethernet.

The source host generates UDP packets directly from
the kernel to avoid the expense of system calls. It pro-
duces packets at specified rates using busy loops, and can
generate up to 130,000 64-byte packets per second. The
destination host counts and discards the source’s UDP
packets at interrupt time in the device driver and can re-
ceive up to 130,000 64-byte packets per second. The 64
bytes include Ethernet, IP, and UDP headers. When the
64-bit preamble and 96-bit inter-frame gap are added,
a 100 Mbit Ethernet link can carry up to 148,800 such
packets per second.

0

20

40

60

80

100

50 60 70 80 90 100 110 120 130

O
ut

pu
t

ra
te

 (
K

pa
ck

et
s/

s)

Input rate (Kpackets/s)

Simple
Linux IP
Click IP

Figure 15: Forwarding rate as a function of input rate for 64-byte

packets. An ideal router that forwarded every packet would appear

as a straight line y = x. The Simple plot is the measured perfor-

mance of a Click configuration that does no processing other than

to emit each input packet. The Linux plot shows the performance

of a standard Linux IP router. The Click plot shows the performance

of the Click IP configuration in Figure 8.

6.2 Forwarding rates

We characterize performance by measuring the rate at
which a router can forward 64-byte packets over a range
of input rates. A plot of input and output rates indi-
cates both the maximum loss-free forwarding rate and
the router’s behavior under overload.

Figure 15 shows the results. An ideal router would
emit every input packet regardless of input rate, corre-
sponding to the line y = x. The line marked Click shows
the performance of the Click IP configuration in Figure 8.
Click forwards all packets for input rates up to 73,000
packets per second. Input rates above that exhibit receive
livelock [17]: an increasing amount of CPU time is spent
in input interrupt processing, leaving less and less time to
forward packets. Figure 15 shows that the Linux 2.2.10
IP forwarding system exhibits the same behavior under
overload, though Linux is faster than Click. The line
marked Simple shows the performance of a Click con-
figuration that forwards input directly to output with no
intervening processing.

Figure 16 shows the effect of packet size on forward-
ing rate. Each point is the maximum over all possible
input rates of the router’s throughput for packets of the
indicated Ethernet frame size. For packet sizes of 250
bytes or larger, both Linux and Click are limited only by
the 100 Mbit Ethernet. For smaller sizes the per-packet
CPU overhead limits the rate.

An otherwise idle Click IP router forwards 64-byte
packets with a one-way latency of 33 microseconds. This
number was calculated by measuring the round-trip ping
time through the router, subtracting the round-trip ping

11

0

20

40

60

80

100

0 50 100 150 200 250 300 350 400 450 500

M
ax

im
um

 t
hr

ou
gh

pu
t

(M
bi

ts
/s

)

Packet size (bytes)

Linux IP
Click IP

Figure 16: Effect of packet size on maximum forwarding rate.

time with the router replaced with a wire, and dividing
by two. 5.8 µs of the 33 are due to the time required to
transmit a 64-byte Ethernet packet at 100 megabits per
second. The latency of a router running standard Linux
IP code is 28 µs.

The simple test configuration used here shows both
Click and Linux in a better light than might be seen in a
real network. The tests did not involve fragmentation, IP
options, ICMP errors, or multiple destinations, though
Figure 8 has all the code needed to handle these. In-
creasing the number of hosts might slow Click down by
increasing the number of ARP table entries. Increasing
the number of network interfaces might decrease perfor-
mance by decreasing the number of packets processed
per interrupt. Increasing the routing table size would
also decrease performance, a problem existing work on
fast lookup in large tables could address [10, 29]. Despite
these issues, a simple benchmark is enough to show the
performance differences between Linux and Click that
are fundamentally due to the Click architecture.

6.2.1 Detailed forwarding cost

Table 1 breaks down the cost of forwarding an IP packet
into five categories. The costs are the amount of CPU
time spent in the relevant code divided by the number of
packets processed. The CPU times were obtained with
the Pentium cycle counter. The input load was 73,000
64-byte packets per second. Interrupts were turned off
for the duration of the Click and Linux IP processing
code so that the cycle counts would not include interrupt
times.

The 10.7 µs per-packet interrupt cost is a function
of the cost of an interrupt and the number of pack-
ets processed per interrupt. In this experiment the in-
put Ethernet device delivered an average of 1.5 packets
per interrupt. The average interrupt cost 1 µs for the

Linux Click
Phase (µs) (µs)

Interrupt 11.1 10.7
IP processing 1.4 2.4
Device send 1.0 1.0

Total 13.5 14.1

Table 1: Average CPU time cost for basic IP forwarding in microsec-

onds per packet.

CPU to save and restore its state, 6.7 µs for Linux to
coordinate with the interrupt controller chip and to dis-
patch the interrupt, and 8.3 µs to execute the Ethernet
device driver’s interrupt handler. The handler moves the
1.5 packets from the receive DMA list to Linux’s incom-
ing packet queue, and frees any outgoing packets whose
transmission has completed. A polling input architecture
[17] might eliminate the CPU and Linux parts of the
interrupt cost under high load, reducing the per-packet
cost from 10.7 to 8.3/1.5 = 5.53 µs. The difference in
interrupt costs between Linux and Click in Table 1 is an
artifact of interrupts being turned off while executing IP
forwarding code: Click leaves interrupts off for longer,
allowing more packets to accumulate for the next inter-
rupt.

The Linux IP processing line in Table 1 includes per-
forming IP forwarding tasks such as checksum compu-
tation and routing table lookup. The Click IP processing
line includes the cost of executing the elements in Fig-
ure 8, which perform the same tasks. The Device Send
line indicates the cost of placing a packet on the device’s
hardware DMA list.

Table 2 details the cost of each element on the forward-
ing path in Figure 8, obtained by repeated invocations
of that element alone. Every cost but that for Queue
includes the overhead of moving a packet from one el-
ement to the next. This overhead appears to be at least
30 nanoseconds, which indicates that at least 20% of the
Click IP processing cost of 2.4 µs is due to architectural
overhead rather than IP processing.

The microbenchmark times in Table 2 sum to 1.4 µs,
whereas the overall measured time to execute all the
Click code is 2.4 µs per packet. Part of the difference
is that Table 2 is missing the FromDevice and ToDe-
vice elements; these are hard to measure in isolation.
Another source of difference is that the microbench-
marks never experience instruction cache misses, while
the Pentium performance counters reveal that the com-
plete Click router (including device driver code as well as
Click elements) spends roughly 2 µs per packet waiting
for instruction fetches.

To help separate the costs of IP processing from el-

12

Element Time (ns)

Paint 38
Classifier 95
Strip 54
CheckIPHeader 299
GetIPAddress 72
LookupIPRoute 66
DropBroadcasts 48
CheckPaint 50
IPGWOptions 59
FixIPSrc 49
DecIPTTL 101
IPFragmenter 62
ARPQuerier 257
Queue 145

Total 1400

Table 2: Microbenchmarks of individual elements involved in IP

forwarding, measured in nanoseconds per packet.

ement overhead, we wrote single elements that do the
work of common groups of IP routing elements, then
used the optimizer mentioned in Section 2.5 to replace
those groups in Figure 8 with the single combination ele-
ments. This new configuration is equivalent to Figure 8,
but has only eight elements on the forwarding path in-
stead of 16: it merges Paint, Strip, CheckIPHeader, and
GetIPAddress into a single input element, and Drop-
Broadcasts, CheckPaint, IPGWOptions, FixIPSrc, Dec-
IPTTL, and IPFragmenter into a single output element.
The new configuration processes an IP packet in 1.9 µs
instead of 2.4. When we add eight distinct no-op ele-
ments to the forwarding path of the new configuration,
the packet processing time rises to 2.3 µs. This suggests
that most of the reduction from 2.4 to 1.9 is due to fewer
inter-element calls and fewer instruction cache misses,
and not due to better compiler optimization of the larger
elements.

6.3 Cost of incremental complexity

Click makes it easy to create complex and potentially
slow configurations. Figure 17 shows the performance
of some of the example Click configurations described in
this paper, and demonstrates that small increases in com-
plexity incur small performance costs. The line marked
IP shows the performance of the basic IP configuration
in Figure 8. The line marked IP+RED corresponds to a
configuration in which a RED element is inserted before
each Queue in Figure 8. No packets were dropped by
RED in the performance test, since the router’s output
link is as fast as its input. The IP+SFQ line shows the
performance of Figure 8 with each Queue replaced with

0

20

40

60

80

100

50 60 70 80 90 100 110 120 130

O
ut

pu
t

ra
te

 (
K

pa
ck

et
s/

s)

Input rate (Kpackets/s)

Switch
IP

IP+RED
IP+SFQ

Figure 17: Forwarding rate as a function of input rate for some

sample Click configurations.

a copy of the fair queuing arrangement in Figure 10. The
Switch line corresponds to the Ethernet switch configu-
ration of Figure 14, which does much less work than the
IP router.

6.4 Differentiated Services evaluation

We tested the diffserv configuration in Figure 13 by
adding it to the IP router (Figure 8) in place of the
Queues. The source host generated four streams of data
simultaneously, each with a different DSCP correspond-
ing to one path through Figure 13. Figure 18 shows the
results. This graph clearly shows the different policing
behaviors of the four streams, and also demonstrates the
livelock behavior discussed in Section 6.2. As the input
rate grows large, Linux takes more and more interrupts
to service the receiving interface. Eventually, there is not
enough CPU time to handle the incoming packets, and
new packets are discarded at the interface itself. Since
packets are discarded early—before entering the Click
configuration—the Meters see a packet rate much smaller
than the true input rate. Thus, at the right edge of the
graph, the Meters switch back to their non-overload be-
havior. Again, this livelock problem could be alleviated
with a polling architecture.

6.5 Performance summary

Click performs well despite its modularity. Its 73,000
packet per second IP forwarding rate is 90% as fast as
Linux on the same hardware, and faster than that of
some low-end commercial routers. For example, Cisco
advertises the 2621, a router with about the same cost as
our hardware ($2000), as forwarding packets between
its two 100 Mbit ports at 25,000 packets per second [6].
Click uses only 16% of the total CPU cycles required
to forward a packet, the rest being consumed by device

13

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35

O
ut

pu
t

ra
te

 (
K

pa
ck

et
s/

s)

Input rate (Kpackets/s)

1
2
3
4

Figure 18: Performance of the diffserv configuration. Each num-

bered line corresponds to one DSCP; see Figure 13. The x axis

corresponds to the input rate for one DSCP, so the aggregate input

rate is four times this value. The performance peak is at roughly

72,000 aggregate packets per second. The line for DSCP 4 jumps

up at 12,500 packets per second because, at that rate, packets with

DSCP 3 are relabeled as DSCP 4.

drivers. Finally, adding a new element to the forwarding
path is cheap enough that it should not deter users from
taking advantage of Click’s flexibility.

7 Related work

Several previous projects have investigated composable
network software. These projects concentrated on end
nodes, where packet motion is vertical (between the net-
work and user level) rather than horizontal (between
interfaces), so they aren’t as well suited as Click for rout-
ing. None of them have pull processing, explicit queues,
or flow-based router context.

The x-kernel [12] is a framework for implementing
and composing network protocols. Like a Click router,
an x-kernel configuration is a graph of processing nodes,
and packets are passed between nodes through virtual
function calls. Unlike Click, an x-kernel configuration
graph is always acyclic and layered, as x-kernel nodes
were intended to represent protocols in a protocol stack.
This prevents cyclic configurations like the IP router (Fig-
ure 8). Connections between nodes are bidirectional—
packets travel up the graph to user level and down the
graph to the network. Packets pass alternately through
“protocol” nodes and “session” nodes, where the ses-
sion nodes correspond to end-to-end network connec-
tions like TCP sessions; session nodes are irrelevant to
most routers. The inter-node communication protocols
are more complex than Click’s. Lastly, many protocol
graph changes require recompilation.

Scout [18, 22] is better suited for routing than the
x-kernel; for example, there are no session objects and

cyclic configurations are partially supported. Execution
in Scout is centered on paths, sequences of nodes that are
run from beginning to end. Packets are classified into the
correct path as early as possible, so that, for example,
Ethernet packets containing MPEG data can be treated
differently as soon as they arrive. Each path is executed
by a thread. It is interesting to note that Click automat-
ically supports paths without enforcing them: an early
Classifier element can separate out MPEG-in-TCP-in-IP-
in-Ethernet traffic, creating a de facto path. Each Scout
path has implicit queues on its inputs and outputs. It is
not clear, therefore, how many queues would be involved
in a complex configuration like the IP router, which is not
amenable to linearization. Scout does have some features
Click currently lacks, namely a more interesting sched-
uler and explicit support for different kinds of inter-node
communication (not just packet flow).

The UNIX System V STREAMS system [25] also
provides composable packet processing modules. Every
STREAMS module includes implicit queuing by default.
Each module must be prepared for the next module’s
queue to fill up, and to respond by queuing or dis-
carding or deferring the processing of incoming pack-
ets. Modules with multiple inputs or outputs must also
make packet scheduling decisions. STREAMS’ tendency
to spread scheduling and queuing logic throughout the
configuration conflicts with a router’s need for precise
control over these functions.

The router plugins system [8, 9] is designed for packet
forwarding, but is only partially configurable. A router
plugin is a software module executed when a classifier
matches a particular flow. These classifiers can be in-
stalled at any of several gates, which are fixed points
in the IP forwarding path. Plugins do not allow control
over the path itself.

To the best of our knowledge, commercial routers are
difficult to extend, either because they use specialized
hardware [19, 21] or because their software is propri-
etary. Even open software is not enough, however. A net-
work administrator could, in principle, implement new
routing functions in Linux, but in practice, we expect few
administrators have the time or capability to modify an
operating system kernel. Kernel programming is harder
than extending a Click configuration.

The active networking research program allows any-
one to write code that will affect a router [26, 27]. How-
ever, this code is intended to teach the router new pro-
tocols, not to change core router properties like schedul-
ing or dropping policies. Click allows a trusted user to
change any aspect of a router; active networking allows
untrusted packets to decide how they should be routed.
The two approaches are complementary.

A number of research projects have built routers out
of off-the-shelf PC hardware and public-domain soft-

14

ware [4, 30]. In many ways this trend towards commod-
ity hardware and software is a return to how routers
were constructed 15 years ago [16]. The parts of this
work that focused on making commodity routers fast
use techniques that could be applied to Click.

8 Conclusion

Click is an open, extensible, and configurable router
framework. Our IP router demonstrates that real routers
can be built by connecting small, modular elements, and
our performance analysis shows that this need not come
at unacceptable cost—the Click IP router is just 10%
slower than Linux 2.2.10, our base system. Interest-
ing scheduling and dropping policies, complex queueing,
and Differential Services can be added to the IP router
simply by adding a couple of elements, and Click is flex-
ible enough to support other applications as well. We
have made the Click system free software; it is avail-
able for download at http://www.pdos.lcs.mit.edu/
click/.

Acknowledgements

We thank Alex Snoeren for his work on the IPsec
elements, Chuck Blake for help with hardware, and
Hari Balakrishnan, Daniel Jackson, Greg Minshall, John
Wroclawski, Chandu Thekkath (our shepherd), and the
anonymous reviewers for their helpful comments.

References
[1] F. Baker, editor. Requirements for IP Version 4 routers.

RFC 1812, Internet Engineering Task Force, June 1995.
ftp://ftp.ietf.org/rfc/rfc1812.txt.

[2] Y. Bernet, A. Smith, and S. Blake. A conceptual model for
diffserv routers. Internet draft (work in progress), Internet
Engineering Task Force, June 1999. ftp://ftp.ietf.

org/drafts/draft-ietf-diffserv-model-00.txt.

[3] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and
W. Weiss. An architecture for differentiated services.
RFC 2475, Internet Engineering Task Force, December
1998. ftp://ftp.ietf.org/rfc/rfc2475.txt.

[4] Kenjiro Cho. A framework for alternate queueing: to-
wards traffic management by PC-UNIX based routers. In
Proc. USENIX 1998 Annual Technical Conference, pages
247–258, June 1998.

[5] Cisco Corporation. Distributed WRED. Technical re-
port. http://www.cisco.com/univercd/cc/td/doc/

product/software/ios111/cc111/wred.htm, as of Oc-
tober 1999.

[6] Cisco Corporation. Cisco 2600 series modular ac-
cess router. Technical report, April 1999. http://

www.cisco.com/warp/public/cc/cisco/mkt/access/

2600/prodlit/2600_ds.htm, as of October 1999.

[7] David Clark. The structuring of systems using upcalls. In
Proc. of the 10th ACM Symposium on Operating Systems
Principles (SOSP), pages 171–180, December 1985.

[8] Dan Decasper, Zubin Dittia, Guru Parulkar, and Bern-
hard Plattner. Router plugins: A software architecture
for next generation routers. In Proc. ACM SIGCOMM
Conference (SIGCOMM ’98), pages 229–240, October
1998.

[9] Daniel S. Decasper. A software architecture for next gen-
eration routers. PhD thesis, Swiss Federal Institute of
Technology, Zurich, 1999.

[10] Mikael Degermark, Andrej Brodnik, Svante Carlsson,
and Stephen Pink. Small forwarding tables for fast routing
lookups. In Proc. ACM SIGCOMM Conference (SIG-
COMM ’97), pages 3–14, October 1997.

[11] Sally Floyd and Van Jacobson. Random early detection
gateways for congestion avoidance. IEEE/ACM Trans.
Networking, 1(4):397–413, August 1993.

[12] N. C. Hutchinson and L. L. Peterson. The x-kernel: an
architecture for implementing network protocols. IEEE
Trans. Software Engineering, 17(1):64–76, January 1991.

[13] T. V. Lakshman, Arnold Neidhardt, and Teunis J. Ott.
The drop from front strategy in TCP and in TCP over
ATM. In Proc. IEEE Infocom, volume 3, pages 1242–
1250, March 1996.

[14] Steven McCanne and Van Jacobson. The BSD packet
filter: A new architecture for user-level packet capture. In
Proc. Winter 1993 USENIX Conference, pages 259–269,
January 1993.

[15] P. E. McKenney. Stochastic fairness queueing. In Proc.
IEEE Infocom, volume 2, pages 733–740, June 1990.

[16] David L. Mills. The Fuzzball. In Proc. ACM SIGCOMM
Conference (SIGCOMM ’88), pages 115–122, August
1988.

[17] Jeffrey C. Mogul and K. K. Ramakrishnan. Eliminating
receive livelock in an interrupt-driven kernel. ACM Trans.
Computer Systems, 15(3):217–252, August 1997.

[18] David Mosberger and Larry L. Peterson. Making paths
explicit in the Scout operating system. In Proc. 2nd Sym-
posium on Operating Systems Design and Implementa-
tion (OSDI ’96), pages 153–167, October 1996.

[19] Peter Newman, Greg Minshall, and Thomas L. Lyon. IP
switching—ATM under IP. IEEE/ACM Trans. Network-
ing, 6(2):117–129, April 1998.

[20] K. Nichols, S. Blake, F. Baker, and D. Black. Defini-
tion of the Differentiated Services field (DS field) in the
IPv4 and IPv6 headers. RFC 2474, Internet Engineering
Task Force, December 1998. ftp://ftp.ietf.org/rfc/
rfc2474.txt.

[21] Craig Partridge et al. A 50-Gb/s IP router. IEEE/ACM
Trans. Networking, 6(3):237–248, June 1998.

[22] Larry L. Peterson, Scott C. Karlin, and Kai Li. OS sup-
port for general-purpose routers. In Proc. 7th Workshop
on Hot Topics in Operating Systems (HotOS-VII), pages

15

38–43. IEEE Computer Society Technical Committee on
Operating Systems, March 1999.

[23] J. Postel, editor. Internet Protocol. RFC 791, Internet
Engineering Task Force, September 1981. ftp://ftp.

ietf.org/rfc/rfc0791.txt.

[24] J. Postel. Internet Control Message Protocol. RFC 792,
Internet Engineering Task Force, September 1981.
ftp://ftp.ietf.org/rfc/rfc0792.txt.

[25] D. M. Ritchie. A stream input-output system. AT&T
Bell Laboratories Technical Journal, 63(8):1897–1910,
October 1984.

[26] Jonathan M. Smith, Kenneth L. Calvert, Sandra L. Mur-
phy, Hilarie K. Orman, and Larry L. Peterson. Activating
networks: a progress report. IEEE Computer, 32(4):32–
41, April 1999.

[27] David L. Tennenhouse, Jonathan M. Smith, W. David Sin-
coskie, David J. Wetherall, and Gary J. Minden. A survey
of active network research. IEEE Communications Mag-
azine, 35(1):80–86, January 1997.

[28] Kevin Thompson, Gregory J. Miller, and Rick Wilder.
Wide-area Internet traffic patterns and characteris-
tics. IEEE Network, 11(6):10–23, November/December
1997.

[29] Marcel Waldvogel, George Varghese, Jon Turner, and
Bernhard Plattner. Scalable high speed IP routing lookups.
In Proc. ACM SIGCOMM Conference (SIGCOMM ’97),
pages 25–38, October 1997.

[30] John Wroclawski. Fast PC routers. Technical report, MIT
LCS Advanced Network Architecture Group, January
1997. http://mercury.lcs.mit.edu/PC-Routers/

pcrouter.html, as of October 1999.

16

ACM SIGCOMM ’99 Conference: Applications, Technologies, Architectures, and Protocols for Computer Communications
Published asComputer Communication Review29(4):3–13, October 1999

A Readable TCP in the Prolac Protocol Language

Eddie Kohler, M. Frans Kaashoek, and David R. Montgomery
M.I.T. Laboratory for Computer Science

Cambridge, MA 02139, USA
{eddietwo, kaashoek, dmontgom}@lcs.mit.edu

http://www.pdos.lcs.mit.edu/

ABSTRACT

Prolac is a new statically-typed, object-oriented language for
network protocol implementation. It is designed for read-
ability, extensibility, and real-world implementation; most
previous protocol languages, in contrast, have been based on
hard-to-implement theoretical models and have focused on
verification. We present a working Prolac TCP implemen-
tation directly derived from 4.4BSD. Our implementation
is modular—protocol processing is logically divided into
minimally-interacting pieces; readable—Prolac encourages
top-down structure and naming intermediate computations;
and extensible—subclassing cleanly separates protocol ex-
tensions like delayed acknowledgements and slow start. The
Prolac compiler uses simple global analysis to remove ex-
pensive language features like dynamic dispatch, resulting in
end-to-end performance comparable to an unmodified Linux
2.0 TCP.

1 INTRODUCTION

Most familiar programming idioms handle network protocols
badly—even modern languages are stressed by common pro-
tocol characteristics like complicated control flow, soft modu-
larity boundaries, and stringent efficiency requirements. This
makes protocol code hard to read, verify and maintain. Spe-
cialized languages are a promising area for solutions to this
problem, and network protocol languages and compilers have
been an active research area for decades [1, 4, 7, 10, 11, 17].

Most existing protocol languages focus on verification.
Their underlying theoretical models are designed for testing

.
This research was supported by the Defense Advanced Research Projects
Agency (DARPA) and Rome Laboratory under agreement number F30602-
97-2-0288. In addition, Eddie Kohler was supported by a National Science
Foundation Graduate Research Fellowship, and M. Frans Kaashoek was
supported by a National Science Foundation Young Investigator Award.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGCOMM ’99 8/1999 Cambridge, MA, USA

c© 1999 ACM 1-58113-135-5/99/0008. . . $5.00

and provability, often making pragmatic goals like real-world
implementation difficult to achieve. Even languages designed
with pragmatism in mind can have theoretical models that are
difficult to program.

In this paper, we describe a language that takes a dif-
ferent approach. Prolac is a lightweight object-oriented lan-
guage tailored for network protocol implementation. It is
focused on readability rather than provability, and on the
human programmer rather than a machine verifier; protocol
implementation requirements inspired its design. No part of
Prolac is difficult to compile into efficient low-level code,
as we demonstrate with our TCP implementation. Section 3
describes the Prolac language and its compiler in more detail.

Section 4 presents the reimplementation of most of TCP
in Prolac. Our TCP is modular, readable, and extensible
compared to other implementations in 4.4BSD and Linux
2.0. Modules and methods are used to break complex func-
tionality into focused parts, and the protocol’s top-down de-
sign remains visible in the final implementation; all this has
no significant performance overhead. Four TCP extensions
(delayed acknowledgements, slow start, fast retransmit, and
header prediction) are implemented through subclassing as
add-ons to a clean base. These extensions are simple—each
one fits in a single source file with less than 60 lines of
Prolac—and can be independently turned on with no changes
to the base protocol. The Prolac TCP runs inside a Linux
2.0 kernel, interfaces with the networking subsystem, and
is able to exchange packets with other, unmodified TCPs
with roughly the same end-to-end performance as unmodi-
fied Linux, as discussed in Section 5.

The contributions of this work are the Prolac language,
including several novel language features; a new way of
structuring a TCP implementation in Prolac, giving superior
readability and extensibility; and a preliminary performance
analysis of this Prolac TCP.

2 RELATED WORK

This section discusses both how Prolac relates to other pro-
tocol languages and compilers, and how the Prolac TCP im-
plementation relates to other TCPs, including modular TCPs
written in conventional languages like C++.

2.1 Protocol languages

Many previous protocol languages have been designed for
verification, not readability or implementation. Prolac uses
ideas from some of these languages, but we found that spe-
cific language features designed with protocols in mind—for
example, parallelism to model both sides of a connection—
often worked against readability, implementability, extensi-
bility, or all three. Prolac’s final design is more conventional
and less domain-specific than these languages; the protocol
domain generally affected the details of our versions of com-
mon concepts, not specific language features.

Two protocol languages, or “formal description tech-
niques,” were originally designed for developing the OSI
protocol suite: LOTOS [4] and Estelle [10]. Estelle, the lan-
guage intended for implementation, is Pascal-like; it struc-
tures a protocol as a set of finite state machines running in
parallel and communicating via broadcast signals. We find
Estelle specifications difficult to read because of this, al-
though it is well suited for state analysis and test genera-
tion. Semi-automatic implementations of Estelle specifica-
tions have been built [20], but finite state machines make
specifications complicated and difficult to change, even for
carefully layered protocols [23].

Esterel [5] addressed some of Estelle’s implementation
difficulties by removing its asynchronous parallelism, leaving
a completely sequential language. This worked. Impressive
performance results are reported for a restricted Esterel ver-
sion of TCP [7], better than a similarly restricted BSD TCP;
this convinced us to leave parallelism out of Prolac. However,
Esterel still shares Estelle’s formal model, interlocking finite
state machines, and the problems this causes: complexity,
unfamiliarity, unreadability, and difficulty of modification or
extension. The Esterel TCP did not include connection es-
tablishment, and appears not to include important extensions
like congestion avoidance.

RTAG [2] is based on a different formal model: context-
free attribute grammars. RTAG is more readable than LOTOS
and Estelle, but large RTAG specifications, like large attribute
grammars generally, become hard to read since the name-
space is flat. An early version of Prolac resembled RTAG, but
readability and other issues have pushed it in the direction of
conventional programming languages. RTAG’s performance
is problematic, again due to parallelism in the language.

Thex-kernel [12], which introduces an explicit architec-
ture for constructing and composing protocols, is orthogonal
to Prolac. We focus on making a single protocol implemen-
tation readable; thex-kernel provides a uniform interface
between protocols and aims to improve the structure and
performance of protocol layering.

Morpheus [1], another object-oriented language for pro-
tocol implementation, is based onx-kernel ideas. To force
clean protocol designs and enable domain-specific optimiza-
tions, it puts many constraints on the programmer.As a result,

existing protocol specifications may not be implementable in
Morpheus. Its compiler has not been written.

2.2 TCP specifications

TCP specifications [19, 22] and existing C implementations
of TCP—particularly the 4.4BSD implementation as pre-
sented by Stevens [21, 24]—have greatly influenced our
TCP implementation, suggesting code structures to emulate
and to avoid. Prolac TCP was rewritten for readability from
4.4BSD’s TCP, using both general object-oriented techniques
and techniques specific to Prolac.

The Fox project’s structured TCP [3], which is based
on x-kernel ideas, uses a functional language—a dialect of
Standard ML—to explore the advantages and disadvantages
of using a non-traditional language in the systems domain.
They report readability and modularity benefits similar to
Prolac’s. Their TCP is not built for protocol extensibility,
however, and because of advanced language features, it is
unsuitable for in-kernel implementation and performance is
low.

Although Prolac resembles object-oriented languages
like C++ and Java, it is designed to be more useful for network
protocols than these languages. We initially tried to imple-
ment a modular TCP in C++, but were foiled by C++’s pro-
gramming paradigm, which pushed us toward a conventional
inheritance structure and a small number of types. Addition-
ally, C++ has inflexible access control, function definitions
are syntactically expensive, and most programmers habitu-
ally avoid virtual functions. These factors suggest that a C++
TCP would combine most protocol data into one large class
(avoiding access control issues at the expense of modularity),
tend towards larger functions, and use dynamic dispatches
only rarely (making it less extensible). Many of these proper-
ties occur inns, the Berkeley network simulator [18], which
contains a C++ implementation of TCP.

3 THE PROLAC LANGUAGE

This section is an introduction to the Prolac language. We
do not provide a thorough description of the language (see
the reference manual [14] for that); instead, we focus on
general features and design goals. We kept Prolac largely
conventional, hoping it would be easy to grasp, but our focus
on protocol-related issues and an additional concentration
on simplicity has led to some novel language contributions.
Two of these, module operators and implicit methods, are
described below.

3.1 Methods and computation

All computation in a Prolac program is performed bymeth-
ods, functions that belong to a module. A method’s body is
simply an expression: Prolac is an expression language, like
Lisp, ML or Haskell, so it has no concept of “statement”. All
of C’s operators (including assignments), plus a few addi-
tions, are usable in Prolac expressions.

2

Prolac method bodies tend to be very short comparedwith
C function bodies—most are 5 lines or less. There are several
reasons for this: Prolac makes it easy and efficient to name
parts of a computation, so large methods tend to be broken
up into sensibly-named parts; furthermore, large expressions
can become unreadable, so there is pressure to keep methods
small.

The choice of an expression language was influenced by a
desire to eliminate syntax, particularly routine or boilerplate
syntax. We find that lightweight syntax makes small methods
more readable, as the substance of the code is the only thing
on display.

Much like Yacc parsers [13], Prolac is wedded to the
C language through uninterpretedactions. A C action may
be included in any Prolac expression; the Prolac compiler,
which generates C, will copy the action to its output when
compiling that expression. C actions can easily refer to Prolac
objects and change their values, as well as perform arbitrary
computation in C. They are extremely useful for interfacing
with the environment a Prolac specification is embedded in.

Figure 1, which is extracted from the Prolac TCP speci-
fication, should give a flavor of what Prolac is like. It gives
a concrete example of Prolac code and explains some of the
language’s features.

3.2 Modules and object orientation

Prolacmodulesrepresent groups of methods and data (data
members are calledfields). Modules may extend other mod-
ules through inheritance, and may provide new definitions for
their superclass’s methods; the correct definition is chosen at
runtime (dynamic dispatch). Thus, Prolac is object oriented,
and modules are similar to C++ or Java classes.

Like Java, the Prolac language is statically typed, all code
is part of some module, a module can have at most one parent,
every method is potentially subject to dynamic dispatch, and
Prolac source code is completely order-independent. How-
ever, not all Java features translate to Prolac—there is no
interface inheritance, for example.

In our TCP implementation, we use inheritance both for
subclassing and to build complex subsystems from smaller
parts. For example, the module representing the base trans-
mission control block is built through successive inheritance
from 6 submodules (basics and connection state, windows,
timeouts, round-trip time measurements, retransmission, and
output). The submodules serve more as grouping constructs
than as types with individual identities.

In the interests of flexibility and simplicity, Prolac does
not provide primitives for manipulating heap storage. Instead,
the user can get memory inside a C action (usingkmalloc,
for example) and use Prolac to initialize it.

3.3 Naming

Descriptive naming makes any program more readable, but in
a programming language like Prolac, which encourages the

module Trim−To−Window ... {

trim−to−window :> void ::=
(before−window ==> trim−old−data),
(after−window ==> trim−early−data),
(sending−data−to−closed−socket ==> reset−drop);

before−window ::= seg−>left < receive−window−left;
trim−old−data {
trim−old−data ::=

(syn ==> trim−syn),
(whole−packet−old ==> duplicate−packet)
| | seg−>trim−front(receive−window−left − seg−>left);

whole−packet−old ::=
seg−>right <= receive−window−left;

duplicate−packet ::=
clear−fin, mark−pending−ack, ack−drop;

}

after−window ::= seg−>right > receive−window−right;
trim−early−data {
trim−early−data ::=

(whole−packet−early ==> early−packet)
| | seg−>trim−back(seg−>right − receive−window−right);

whole−packet−early ::=
seg−>left >= receive−window−right;

early−packet ::=
((receive−window−empty

&& seg−>left == receive−window−left)
==> mark−pending−ack)

| | { PDEBUG(”early packet\n”); }, ack−drop;
}

... }

Figure 1: Part of Prolac TCP’s code for trimming incoming
packets to fit the current receive window. The current packet
is stored in the ‘seg’ field. Code is split into small, readably
named methods, which are grouped into namespaces. Pack-
ets have wide interfaces: both ‘seg−>seqno’ and ‘seg−>left’
refer to the first sequence number in the packet, but read well
in different situations. Methods not defined in the figure are
taken from other modules, such as the transmission control
block (TCB); their purposes should be clear from their names.
Methods ending in ‘-drop’ are exceptions. There is one C ac-
tion, in early−packet; as in Yacc, C actions are enclosed in
braces. Syntax notes: Rule definitions look like ‘rule-name
::= expression;’, possibly with arguments in parentheses or
a return type following ‘:>’. Hyphens are allowed in identi-
fiers. Parentheses may be left off when calling methods that
take no arguments. Most operators behave as in C. The new
operator ‘==>’ is used for simple if statements; ‘x ==> y’ is
equivalent to ‘x ? (y, true) : false’.

3

use of many small methods, sensible naming is an imperative.
In the Prolac TCP implementation, we try to use method
names that make their purposes immediately clear; without
this property, a reader would have to jump nonlinearly from
method to method to have any hope of understanding the
code. In this section, we discuss a range of Prolac features
that encourage and support sensible naming. Together, these
features make naming in Prolac significantly more flexible
than in C++ or Java.

Prolac supports namespaces both inside and outside mod-
ules, allowing methods and modules to be grouped into re-
lated units. More flexibility is provided bymodule operators,
operators that affect the compiler’s behavior rather than the
running program’s behavior. Thehide andshow module oper-
ators support loose, flexible access control. IfM is a module
with a feature namedx, then ‘M hide x’ is the same module,
except that itsx feature is inaccessible. The Prolac TCP im-
plementation useshide to hide implementation details from
module users. But hard access control is a disadvantage in the
protocol domain: protocol extensions often work by chang-
ing deeply buried, almost random bits of protocol code that
cannot be determined a priori. This suggests that access con-
trol should be overridable, which theshow operator supports
by making hidden names accessible again.

The implicit methodmechanism was also inspired by
the protocol domain. In most object-oriented languages, it is
syntactically easier to call an object’s methods from within
another method of that object, since you can leave off the
reference to ‘this’ or ‘ self’. When a piece of code uses many
of a particular object’s methods, the user will therefore tend
to write it as a method, since it’s so much easier that way.
Protocol implementations differ from most programs in that
data objects are small and limited in number: TCP, for ex-
ample, deals with transmission control blocks (TCBs) and
packets, and not much else. But all TCP processing deals in-
timately with TCBs; does that mean all of TCP’s code should
be situated in a TCB module?

The implicit method mechanism solves this problem by
allowing the programmer to refer toanotherobject’s meth-
ods with the same syntactic convenience. The programmer
can mark a field with theusing module operator. When the
compiler finds an undefined name, it transparently looks for
methods with that name on any fields marked withusing.
If a unique method is found, it is used implicitly. With im-
plicit methods, TCP processing can be broken into modules
based on control flow structure, rather than the less revealing
structure of the data, without giving up on readability.

3.4 Compilation and optimization

The Prolac compiler compiles Prolac into C. It generates
high-level C, featuring large expressions resembling the Pro-
lac input, reasonable indentation, and relatively few intro-
duced temporaries. The result is reasonably readable, debug-
gable with C debuggers, and, with some C compilers, results

in better object code than an equivalent lower-level version.
The compiler accepts an entire Prolac program at once.

This is not a problem even for our relatively complex TCP
implementation; with full optimization, the Prolac compiler
processes it in under a second on a 266 MHz Pentium II
laptop.

The Prolac language has many features that are poten-
tially expensive to implement—universal dynamic dispatch,
many small functions, exceptions, modules, and so forth. We
carefully arranged the details of these features to minimize
their overhead, and simple compiler optimizations can re-
move that overhead almost entirely. The remainder of this
section describes some of these optimizations.

3.4.1 Static class hierarchy analysis

The most important optimization the compiler performs is
static class hierarchy analysis[9], a simple global analysis
that removes every dynamic dispatch in our TCP implemen-
tation. The idea is simple: if the compiler can prove that the
method being called was not overridden—it is a leaf in the
inheritance graph—then that method can be called directly,
without the need for dynamic dispatch.

Removingdynamic dispatches is absolutely necessary for
performance. A dynamic dispatch is slightly more expensive
than a conventional function call, but the real problem is that
Prolac will not inline a dynamically dispatched method. The
language encourages the use of small methods for naming
extremely simple computations; the only hope of having good
performance is therefore aggressive inlining.1

To show the magnitude of the problem, we removed static
class hierarchy analysis from the Prolac compiler. Even when
allowing the compiler to inline or directly call methods that
were only defined once, the number of dynamic dispatches
jumps to 62, many for trivial methods that obviously should
be inlined. Considering thateveryProlac method is poten-
tially dynamically dispatched, however, the situation is even
worse: a naive compiler (equivalent to an average C++ or
Java compiler) would generate 1022 dynamic dispatches in
the Prolac TCP implementation.

Our implementation of static class hierarchy analysis was
motivated by, and works so well because of, characteristics
of network protocols. The type-related behavior of TCP, for
example, is static at runtime: it deals with one kind of control
block, one kind of packet, one kind of header, and so on. In
other words, there is only one kind of TCP running at any
time. Since we don’t have to demultiplex among varieties
of TCP, we can use inheritance purely for grouping related
methods and including extensions that should always be used.
In this style, the module we want will always be the most
derived module (the TCB we want is the most derived TCB,

1. It is possible to inline dynamic dispatches with mechanisms such as
speculative inlining, which inlines one version of the code in question
and generates a check to see if that version is the correct one. However,
these mechanisms are complex and have nonzero overhead.

4

and so forth). But every method in a most derived module is
a most derived method, so static class hierarchy analysis will
always succeed.

Of course, it would be perfectly possible to use inheri-
tance to demultiplex packets or kinds of processing—to de-
rive TCP and UDP modules from a superclass representing
Internet transport protocols, for example. In this case, static
class hierarchyanalysis would appropriately fail, and the nec-
essary dynamic dispatches would be generated. The analysis
would continue to be effective within the module hierarchies
for the individual protocols.

3.4.2 Inlining and outlining

Mosberger et al. [16] list a number of useful techniques for
improving protocol efficiency. Prolac has direct support for
three of these: inlining, path inlining, and outlining. Inlin-
ing is replacing a function call with the function’s body;
path inlining is recursive inlining, where functions called by
an inlined body are replaced with their bodies, and so on;
and outlining is moving code for uncommon cases out of
common-case code, thus improving i-cache behavior.

The programmer is given fine-grained control over these
optimizations through expression operators and module op-
erators. Module operators are especially useful, as they allow
the programmer to specify, without cluttering either the call
site or the method’s definition, that a method should inlined—
and, unlike C++’sinline declaration, module operators can
be overridden.

4 A READABLE, EXTENSIBLE
TCP IMPLEMENTATION

This section describes the structure of the Prolac TCP imple-
mentation, highlighting its readability and extensibility and
describing several of its subsystems in detail.

4.1 Overview and status

The core of the Prolac TCP is a near-full reimplementation of
4.4BSD’s TCP as described by Stevens [24], rethought and
reorganized from the ground up for greater readability and
extensibility. We implement full input and output process-
ing including retransmissions, slow start, fast retransmit and
congestion avoidance, TCP options, and header prediction.
We do not yet fully implement keep-alive or persist timers or
urgent processing. Also, some changes were made to emulate
some of Linux 2.0 TCP’s behavior; for example, Linux TCP
occasionally delays anack for at most .02 sec where BSD
would send anack immediately.2 Packet comparisons using
tcpdump show that Linux 2.0–Prolac TCP exchanges are in-
distinguishable from Linux 2.0–Linux 2.0 TCP exchanges,
except for keep-alive and persist timers and urgent process-
ing.

2. This happens when responding to a packet whosepsh bit is set.

Prolac TCP currently runs inside the Linux kernel as a dy-
namically loadable kernel module. It works alongside Linux’s
default TCP; packets directed to specific configurable ports
are routed to Prolac instead of the default TCP stack. Prolac
TCP is fully integrated with lower-level Linux networking
code, including IP processing, network devices, and memory
management. This integration even extends to sharing data
structures; we use C actions and a Prolac structure-punning
feature3 to make Prolac’sSegment module an alias for Linux’s
internal packet representation,struct sk_buff. We have
begun integration with higher-level networking code, partic-
ularly thestruct sock structure representing BSD sockets,
but for the results in this paper we used an alternative inter-
face to communicate with user level: a handful of new system
calls for connection, data transfer, and polling that bypass the
socket interface.

Most Linux-specific code is localized in a handful of
modules, which should make it easier to port Prolac TCP
to other operating systems. The Linux TCP is only slightly
modified from a TCP that runs at user level using Berkeley
Packet Filters [15].

4.2 Organization

The Prolac TCP implementation was guided by the goal of
separating TCP into small, focused modules, ormicroproto-
cols, handling one job each. TCP extensions are separated
from the base protocol into independently selectable units.
This principle was also used within the base protocol: we di-
vided complex functionality, like connection state and input
processing, into several microprotocols each. Input window
management, for example, can be considered a microprotocol
within TCP; it is localized in two modules, one for the trans-
mission control block (Window−M.TCB) and one for input
processing (Trim−To−Window,which was shown in Figure 1).

The current Prolac TCP implementation consists of 21
source files and about 2100 nonempty lines of code. This is
about one-third the size of Linux 2.0’s TCP implementation,
although that TCP does have more functionality than ours
(syn cookies, for example). The Prolac files are combined by
the C preprocessor and the resulting preprocessed source is
passed to the Prolac compiler.

Modules in the base TCP implementation fall into six cat-
egories:utilities, for byte-swapping and checksumming rou-
tines;data, for data-centric protocol modules—IP and TCP
headers, TCP packets, and the transmission control block;
input, for processing received packets;output, for sending
packets;timeouts,for slow and fast timeout events; andin-
terfaces,for communicating with the rest of the system. Fig-
ure 2 lists the modules constituting the base protocol, many
of which are described in detail in the following sections.

3. The programmer can control how a module is laid out in memory by
giving specific byte offsets for its fields. Prolac automatically generates
any required padding and warns when field offsets conflict.

5

Utilities
Byte−Order Byte-swapping
Checksum Checksumming

Data
Headers.IP IP header
Headers.TCP TCP header
Segment Packet
TCB Transmission control block

Base.TCB Basics and connection state
Window−M.TCB Send and receive windows
Timeout−M.TCB Timeouts
RTT−M.TCB Round-trip time measurement
Retransmit−M.TCB Retransmission
Output−M.TCB State for BSD-like output

Input
Base.Input General input processing

Base.Listen Handle input inlistenstate
Base.Syn−Sent Handle input insyn-sentstate
Base.Trim−To−Window Trim packet to fit receive

window
Base.Reset Processrst
Base.Ack Processack
Base.Reassembly Reassembly
Base.Fin Processfin

Output
Base.Output Output processing

Timeouts
Base.Timeout Timeouts

Interfaces
Tcp−Interface User-level interface

(read, write, etc.)
Base.Socket Interface to socket layer

Figure 2: Module structure of the Prolac TCP implementa-
tion: the base protocol.

4.3 The TCB

In the RFC definition of TCP [19], all persistent TCP-specific
data about a connection is stored in a single structure, the
transmission control block (or TCB). The 4.4BSD TCP im-
plementation and our Prolac TCP implementation follow this
organization. The TCB is large—the 4.4BSD TCB structure
has 48 fields, while our Prolac TCB structure currently has
42. This is too large to be readably defined in a single module,
especially if methods are included. Therefore, as mentioned
above, we build the TCB by successive inheritance from six
components: basics and connection state, windows, timeouts,
round-trip time measurement, retransmission, and output.
Each of these components is made self-contained through
hide, the access control module operator; private fields and

methods are hidden from other components. This defines a
public interface for the module, which has the usual benefit
of making it easier to safely change module internals.

The TCB is mostlypassive,meaning that it does not
usually act upon other modules—other modules act upon it.
This resembles 4.4BSD’s non-object-oriented implementa-
tion, where the TCB simply a flat structure. Even in Prolac,
however, passive organization seems right for the TCB: TCP
processing is so complex that separating control flow from
data generally improves readability.

Even our passive TCB still benefits from object-oriented
design. First, the TCB provides small, descriptive methods
that perform simple calculations, so users need never touch
the fields themselves. For example, there are two ways to
determine whether a received acknowledgement,ackno, is
valid for the current connection:

valid−ack(ackno :> seqint) ::=
ackno >= snd una && ackno <= snd max;

unseen−ack(ackno :> seqint) ::=
ackno > snd una && ackno <= snd max;

(snd una andsnd max are fields maintained by the TCB. All
variables have typeseqint, so the arithmetic comparison op-
erators are actually circular comparison mod 232.) valid−ack
and unseen−ack both return true iff they are given a good
acknowledgement number, butvalid−ack allows duplicate ac-
knowledgements whileunseen−ack does not. The method
names make this clearer than the expressions, which dif-
fer only subtly. Calling these methods makes code easier
to read, since the reader doesn’t need to parse expressions;
it also helps prevent errors, since the programmer must ac-
tively choose between them. The choice betweenvalid−ack
andunseen−ack puts the issues more clearly at stake than the
choice between> and>=, which makes the programmermore
likely to choose carefully and correctly.

Second, some TCP events, such as receiving a new ac-
knowledgement, trigger complex behavior that cuts across
Prolac’s module structure. To model this cleanly, the TCB
useshooks,methods that are called to mark the occurrence of
a protocol event. Hooks exist to be extended; a base hook de-
fined inBase.TCB often does nothing—the action takes place
in overriding definitions from later TCB components. Here
are a few of the TCB’s hooks, including the event that triggers
each and typical actions they perform.

• receive−syn−hook(seqno :> seqint)

Called when asyn is received on a connection.seqno is
the syn’s sequence number. Effects: Sets various TCB
fields (like irs, the initial received sequence number,
andrcv next, the sequence number we expect to receive
next).

6

• new−ack−hook(ackno :> seqint)

Called when a new acknowledgement is received. Ef-
fects: Removes newly acknowledged data from the re-
transmission queue, updatessnd una (the first unac-
knowledged sequence number sent), adjusts the send
window, and updates the current round-trip time esti-
mate if appropriate.

• total−ack−hook

Called when all outstanding data has just been acknowl-
edged. Effects: Cancels the retransmission timer.

• send−hook(seqlen :> uint)

Called when a packet is sent.seqlen is its length
in sequence numbers. Effects: Movessnd next and
snd max forward, clears the pending-acknowledgement
and delayed-acknowledgement flags, adjusts the send
window, and optionally starts round-trip time measure-
ment and the retransmission timer.

Most hooks are multiply overridden,with each overriding
definition adding behavior to the previous definition. Figure 3
shows how this works in practice forsend−hook, which has
five definitions total (four in base modules and one in the
delayed-ack extension). Each individual definition is small,
focused, and clear, although the aggregate behavior is sophis-
ticated.

The individual TCB submodules are similarly readable:
each contains limited, focused processing, with complex be-
havior only created through the modules’ combination. This
style does obscure the aggregate behavior—the code in Fig-
ure 3 was taken from five source files—but when suitably
natural hooks are chosen, this doesn’t tend to be a problem.

4.4 Input and output

The Prolac TCP implementation divides input processing
into eight independent modules based on processing steps
specified in the original TCP RFC [19]. 4.4BSD TCP also
follows the RFC in outline, but obscures that relationship by
hand-inlining large chunks of code. Prolac, in contrast, keeps
the high-level structure crystal clear: Figure 4 demonstrates
this by comparing an excerpt from our input processing code
with headings from the TCP RFC. This top-down organiza-
tion has no associated cost in Prolac, since the methods can
all be inlined.

The base input processing module,Input, declares ex-
ceptions and convenience methods and directs control flow
through the other modules. (The methods defined in Figure 4
are all taken fromInput.) The other seven input modules—
Listen, Syn−Sent, Trim−To−Window, Reset, Ack, Reassembly,
and Fin—all inherit from Input and use its exceptions and
convenience methods.

The relevant TCB and the input packet being processed
are stored inInput, as fields namedtcb andseg. This allows

Base.TCB.send−hook(seqlen :> uint) ::=
// This is the base hook. It adjusts some fields and clears
// some flags
clear−flag(F.pending−ack | F.pending−output),
snd next += seqlen,
snd max max= snd next;

Window−M.TCB.send−hook(seqlen :> uint) ::=
// The window TCB additionally adjusts the send window
// and clears another flag
inline super.send−hook(seqlen), // calls Base.TCB.send-hook

clear−flag(F.need−window−update),
snd wnd −= seqlen;

RTT−M.TCB.send−hook(seqlen :> uint) ::=
// Decide whether to measure this packet’s round-trip time.
// After inline super.send-hook, the sent packet’s sequence
// number issnd next - seqlen, not snd next

inline super.send−hook(seqlen),
(seqlen && !retransmitting && !timing−rtt ==>

start−rtt−timer(snd next − seqlen));
Retransmit−M.TCB.send−hook(seqlen :> uint) ::=

// Start the retransmit timer if necessary
inline super.send−hook(seqlen),
(!is−retransmit−set && !recently−acked ==>

start−retransmit−timer);
Delay−Ack.TCB.send−hook(seqlen :> uint) ::=

// Clear the delayed acknowledgement flag
inline super.send−hook(seqlen),
clear−flag(F.delay−ack);

Figure 3: The five send-hook methods defined by the
Prolac TCP implementation, from the initial definition (in
Base.TCB) to the most derived version (in Delay-Ack.TCB).
Each method except the first explicitly calls its predecessor
with super.send-hook(seqlen), resulting in cumulative behav-
ior.

them to be passed implicitly from method to method within
each module, and enables implicit method search as described
in Section 3.3, making the code more readable by avoiding
fussiness. If the packet and TCB weren’t fields, for example,
the user would have to pass them as parameters to every
method—which, with many small methods, would quickly
become annoying. There is a performance penalty: the packet
and TCB are structure members, and therefore not stored in
registers by some compilers; and creatingInput objects, or
objects derived fromInput like Ack and Reassembly, has a
small but nonzero overhead.

Output processing, which is smaller and simpler than
input processing, is implemented in a single module. Out-
put processing follows the 4.4BSD model: a single routine,
Output.do, is called whenever any normal kind of output is
needed; theOutput module then decides exactly what kind of
packet to send. Several small changes were made, including
consistently using sequence number length rather than data

7

do−segment ::=
(closed ==> reset−drop)
| | (listen ==> do−listen)
| | (syn−sent ==> do−syn−sent)
| | other−states;

other−states ::=
trim−to−window,
(rst ==> do−reset),
(syn ==> reset−drop),
(!ack ==> drop), do−ack,
process−data;

process−data ::=
(urg ==> check−urg),
let is−fin = do−reassembly in
(is−fin ==> do−fin)

end,
send−data−or−ack;

If the state isclosed . . .
If the state islisten . . .
If the state issyn-sent . . .

Otherwise,
first check sequence number . . .
second check therst bit, . . .
fourth, check thesyn bit, . . .
fifth check theack field, . . .

sixth, check theurg bit, . . .
seventh, process the segment text, . . .
eighth, check thefin bit, . . .

and return. [19]

Figure 4: The Prolac implementation, at left, directly echoes the TCP RFC specification, at right. (The RFC’s third step, “check
security and precedence”, is missing.)

length (sequence number length is data length plus anysyn
andfin flags). These changes, which were only intended to
make the code more consistent and therefore readable, ended
up discovering a bug in the 4.4BSD code as reported by
Stevens [24]: if a packet just fits in a maximum segment size,
but doesn’t quite fit when options are included, that code
could leave afin on the packet when it should have been
removed. While this small bug had already been fixed in
our OpenBSD kernel, our independent discovery eloquently
demonstrates the advantages of code readability.

4.5 Extensions

TCP has been extended over time, with some of these ex-
tensions becoming standard—slow start, congestion avoid-
ance, fast retransmit, and fast recovery, for example [22].
We used subclassing to extend the Prolac TCP without clut-
tering its base definition. We have currently implemented
four TCP extensions: delayed acknowledgements, slow start
and congestion avoidance, fast retransmit and fast recovery,
and header prediction. A C preprocessor mechanism called
hookupmakes these extensions both transparent and inde-
pendent: almost any subset of them can be turned on without
changing the rest of the system in any way.

Each extension consists of several modules that override
modules from the base protocol. All modules relating to a
particular extension are placed in a single source file. The
extension is turned on only if that source file is#included
into the preprocessed source. Figure 5 lists the modules that
constitute some of the extensions and their corresponding
source files.

This arrangement makes extending TCP simple, natural,
and convenient. None of our extensions takes more than 60
lines of Prolac proper. Each extension is concentrated and

Delay−Ack.* Delayed acknowledgements
Delay−Ack.TCB (in delayack.pc)
Delay−Ack.Reassembly
Delay−Ack.Timeout

Slow−Start.* Slow start and congestion
Slow−Start.TCB avoidance (inslowst.pc)
Slow−Start.Ack

Fast−Retransmit.* Fast retransmit
Fast−Retransmit.TCB (in fastret.pc)
Fast−Retransmit.Ack

Header−Prediction.* Header prediction
Header−Prediction.Input (in predict.pc)

Figure 5: Module structure of the Prolac TCP implementa-
tion: some protocol extensions.

readable, since extension-related code is contained in one
file rather than spread throughout thousands of lines of other
protocol processing. Finally, the extension code runs without
additional runtime overhead, thanks to static class hierarchy
analysis and inlining. All this makes Prolac a good platform
for developing protocol extensions.

4.6 Discussion

If, while extending our TCP, we discover the need for a new
hook, we simply add it to the base protocol with an empty
definition. This can make the implementation easier to follow,
but similar techniques would work without changing the base
protocol at all. A user can add a new hook by overriding the
method or methods that should call the hook, and adding a
call of the hook itself. Changing asend−segment method to

8

End-to-end latency Processing time
(µs) (cycles)

Linux TCP 184 3360
Prolac TCP 181 3067
Prolac without inlining 228 6833

Figure 6: Microbenchmark results for the echo test. The test machine sends 4 bytes of data to an unmodified Linux 2.2.7
machine’s echo port and waits for an ack. Results are averaged over five trials, each consisting of 1000 round-trips, for a total
of 10000 packets: 5000 input and 5000 output. Processing time represents the average number of cycles it took to process a
packet.

include a hook might look like this:

Base.TCB.send−segment(s :> *Segment) ::= ...;
Extension.TCB.send−segment(s :> *Segment) ::=

super.send−segment(s),
send−hook(s−>seqlen);

Extension.TCB.send−hook(seqlen :> uint) ::= ...;

The extension framework we have described works best
for extensions that do not fundamentally change the base
TCP’s behavior or data structures. An extension implement-
ing extended sequence numbers, for example, would be much
more complex than our delayed-ack extension.

5 PROLAC TCP NETWORK PERFORMANCE

This section describes experiments that compare Prolac TCP
with an unmodified Linux 2.0 TCP implementation. These
experiments show that Prolac’s high-level language features
come with little or no associated performance cost; when
Prolac does worse, it seems to be due to implementation
artifacts like packet copies.

We compared the Prolac TCP loadable kernel module,
running on a Linux 2.0.36 kernel, with Linux 2.0.36’s native
TCP. There are important differences between the two. Linux
TCP is generally more reliable, well tested, and complete
than Prolac TCP, although Prolac does have some features
Linux lacks, such as header prediction. In addition, Linux
TCP communicates with user level through the socket API,
while Prolac TCP uses its own system-call-based API and a
private socket-like structure. We tested sources of overhead
in both TCPs and found that only one was significant: due
to implementation artifacts, Prolac TCP copies packets one
more time on input and two more times on output than Linux.
The sole input copy and one output copy are due to Prolac’s
socket-like API, and affect only end-to-end measurements
like latency and throughput; the other output copy is in output
processing proper and affects cycle counts as well.

The test machines were 200 MHz Pentium Pro desk-
top PCs with DEC Tulip-based Ethernet cards (SMC
10/100 EtherPower). One machine ran either Linux 2.0.36
or Linux 2.0.36 with Prolac TCP; the other always ran
Linux 2.2.7. They communicated over an otherwise idle

100 Mbit/s Ethernet with one hub.
Figure 6 shows the results of an echo test, which mea-

sures end-to-end latency and protocol processing overhead.
In this test, the Prolac machine repeatedly writes four bytes
of data to the other machine’secho port; the other machine
echoes the data. Prolac’s extra data copies do not affect this
test significantly as the data size is small. To measure proto-
col processing time in isolation, we instrumented Linux and
Prolac input and output processing functions using Pentium
performance counters. Although both Linux and Prolac can
output packets because of input events—for example, send-
ing anack or more data in response to an input packet—this
does not occur in the echo test. Linux IP layer processing
time is included in output processing time.

Results show that Linux and Prolac TCP have comparable
end-to-end latency to within a few microseconds. Prolac did
slightly better in terms of cycles per packet (3067, versus
3360, average cycles to process a packet). The difference
may be due to the two TCPs’ timer implementations. Linux
sets multiple fine-grained millisecond timers per connection
to handle various timeouts; Prolac, following the 4.4BSD
model, uses one fast timer (with 200 ms resolution) and one
slow timer (with 500 ms resolution) for all of TCP. In the
echo test, where timers are being set and cleared on each
round trip, this results in Linux having significantly more
timer overhead.

We also measured the impact of the compiler’s inlining
optimizations on Prolac TCP. With no inlining whatsoever,
Prolac TCP processing time jumps by more than 100% to
6833 cycles per packet on the echo test, and end-to-end la-
tency increases by 25%.

Prolac does significantly worse on a test measuring
write throughput. In this test, the Prolac machine writes
8000 Kbytes of data to the other machine’sdiscard port.
Prolac’s end-to-end write bandwidth was 8 Mbyte/s com-
pared to Linux’s 11.9 Mbyte/s. This is probably due to Pro-
lac’s two extra data copies, a hypothesis cycle count measure-
ments tend to confirm. While Prolac’s cycle count is lower
than Linux’s by 10% in the echo test, it is roughly twice as
high as Linux’s in the throughput test, and the only signif-
icant difference in the packets processed is the amount of
data attached to them. Also, load instruction count on the

9

0

1000

2000

3000

4000

5000

6000

7000

32 64 128 256 512 1024 2048

C
yc

le
s

pe
r

pa
ck

et

Packet size (bytes)

Prolac
Linux

Figure 7: Input packet processing, in cycles per packet, for
different packet sizes (echo test). Packet sizes include TCP
and IP headers. The vertical bars indicate one standard de-
viation either way from the average.

throughput test (using a slightly different configuration) was
much higher for Prolac than for Linux.

Figures 7 and 8 justify this hypothesis further by showing,
for the echo test, the effect of packet size on cycles per packet
for both Linux and Prolac TCP. On the input processing path,
Prolac has no extra copies and always slightly outperforms
Linux; on the output processing path, however, there is one
extra copy, and Prolac TCP performs worse on larger packets.

Overall, these results show that the Prolac language’s per-
formance overhead is minimal, even for a highly modularized
implementation of a large, complex protocol like TCP.

Prolac may become more efficient in the future. First, we
could eliminate the extra data copies in the input and output
paths, which, as we have shown, are the key difference be-
tween Linux and Prolac TCP behavior. Second, we haven’t
yet applied all the compiler optimizations we have imple-
mented, such as outlining. Third, there are optimizations we
have not yet tried; Prolac’s natural extensibility, combined
with the compiler’s ability to optimize modularity away, may
allow us to exploit layer collapsing as discussed by Clark and
Tennenhouse [8].

6 DISCUSSION

Prolac is intended to be robust, readable, and efficient enough
for real-world use. Our focus on real-world application has
made Prolac a better language: simpler, faster, more readable,
more familiar. Nevertheless, it’s fair to ask whether Prolac is
truly suited for production use. This section discusses argu-
ments for and against using Prolac in the real world.

We have discussed Prolac’s advantages of readability,
modularity, and extensibility throughout this paper. Due to
careful structuring and Prolac’s module-manipulation facili-
ties, the Prolac TCP is substantially easier to understand piece

0

1000

2000

3000

4000

5000

6000

7000

32 64 128 256 512 1024 2048

C
yc

le
s

pe
r

pa
ck

et

Packet size (bytes)

Prolac
Linux

Figure 8: Output packet processing, in cycles per packet, for
different packet sizes (echo test).

by piece than other TCPs we have seen. Our TCP is certainly
easier to extend than conventional TCPs: the protocol exten-
sions are among the clearest sections of the Prolac TCP, and
are guides for those wanting to extend the protocol further. It
is easy to integrate Prolac into an existing C-based system.
Finally, and in contrast to C or C++, Prolac’s aggressive in-
lining and dynamic dispatch removal make it possible to use
these ideas without sacrificing performance.

But there are compelling reasons to keep Prolac out of
production code as well. The Prolac compiler, which is not
small (20,000 lines of C++), would effectively become part of
the system’s code base. The compiler is stable but not bullet-
proof, and would need to be maintained. Furthermore, while
we find Prolac very readable, it is also not C: it takes work
to learn Prolac, particularly if you are used to large func-
tions instead of small, interconnected ones. Some of Prolac
TCP’s design features may be usable in a more conventional
language, but those languages’ syntactic qualities, and the
runtime costs of unoptimized dynamic dispatch, would make
some of its best features less attractive.

We have shown that Prolac makes it much easier to extend
protocols, but how common is that? If you don’t need to mod-
ify a protocol, Prolac’s ease of extension and modification is
irrelevant. However, even production TCPs are changed all
the time: extended with security measures likesyn cookies or
optimizations like TCP Vegas [6], or even completely rewrit-
ten (Linux’s TCP input processing functions were redone
between Linux 2.0 and Linux 2.2).

7 CONCLUSION

Prolac’s readability and features tailored for network proto-
cols made writing TCP a pleasant experience, and the result-
ing specification is significantly more readable than any other
we have seen. Its extensibility should be useful for proto-
col teaching, research, and development. Prolac’s high-level

10

language features were carefully designed to have minimal
runtime costs, as demonstrated by experimental results.

ACKNOWLEDGEMENTS

We would like to thank Charles Blake for helping with our
experimental setup, and Robert T. Morris and the anonymous
reviewers for insightful comments.

REFERENCES
[1] Mark B. Abbott and Larry L. Peterson. A language-based ap-

proach to protocol implementation.IEEE/ACM Transactions
on Networking, 1(1):4–19, February 1993.

[2] David P. Anderson. Automated protocol implementation
with RTAG. IEEE Transactions on Software Engineering,
14(3):291–300, March 1988.

[3] Edoardo Biagioni. A structured TCP in Standard ML. In
Proceedings of the ACM SIGCOMM 1994 Conference, pages
36–45, August 1994.

[4] Tommaso Bolognesi and Ed Brinksma. Introduction to the
ISO specification language LOTOS. In Peter H. J. van Eijk,
Chris A. Vissers, and Michel Diaz, editors,The formal descrip-
tion technique LOTOS, pages 23–73. North-Holland, 1989.

[5] Fréd́eric Boussinot and Robert de Simone. The ESTEREL
language. Technical Report 1487, INRIA Sophia-Antipolis,
July 1991.

[6] Lawrence S. Brakmo, Sean W. O’Malley, and Larry L. Pe-
terson. TCP Vegas: new techniques for congestion detection
and avoidance. InProceedings of the ACM SIGCOMM 1994
Conference, pages 24–35, August 1994.

[7] Claude Castelluccia, Walid Dabbous, and Sean O’Malley.
Generating efficient protocol code from an abstract specifica-
tion. InProceedings of the ACM SIGCOMM 1996 Conference,
pages 60–71, August 1996.

[8] David D. Clark. Modularity and efficiency in protocol imple-
mentation. RFC 817, IETF, July 1982.

[9] Jeffrey Dean, David Grove, and Craig Chambers. Optimiza-
tion of object-oriented programs using static class hierarchy
analysis. InProceedings of the ECOOP 1995 Conference,
pages 77–101, August 1995.

[10] P. Dembinski and S. Budkowski. Specification language Es-
telle. In Michel Diaz, Jean-Pierre Ansart, Jean-Pierre Courtiat,
Pierre Azema, and Vijaya Chari, editors,The formal descrip-
tion technique Estelle, pages 35–75. North-Holland, 1989.

[11] Diane Hernek and David P. Anderson. Efficient automated pro-
tocol implementation using RTAG. Report UCB/CSD 89/526,
University of California at Berkeley, August 1989.

[12] Norman C. Hutchinson and Larry L. Peterson. Thex-kernel:
an architecture for implementing network protocols.IEEE
Transactions on Software Engineering, 17(1):64–76, January
1991.

[13] Stephen C. Johnson. Yacc—Yet Another Compiler-Compiler.
Comp. Sci. Tech. Rep. #32, Bell Laboratories, July 1975.
Reprinted as PS1:15 inUnix Programmer’s Manual, Usenix
Association, 1986.

[14] Eddie Kohler. Prolac language reference manual. Avail-
able from http://www.pdos.mit.edu/∼eddietwo/prolac/, Jan-
uary 1999.

[15] Steven McCanne and Van Jacobson. The BSD packet fil-
ter: a new architecture for user-level packet capture. In
USENIX Technical Conference Proceedings, pages 259–269,
San Diego, Winter 1993. USENIX.

[16] David Mosberger, Larry L. Peterson, Patrick G. Bridges, and
Sean O’Malley. Analysis of techniques to improve protocol
processing latency. InProceedings of the ACM SIGCOMM
1996 Conference, pages 73–84, August 1996.

[17] Linda Ness. L.0: a parallel executable temporal logic language.
In Mark Moriconi, editor,Proceedings of the ACM SIGSOFT
International Workshop on Formal Methods in Software De-
velopment, pages 80–89, September 1990.

[18] UCB/LBNL/VINT network simulator NS homepage. Avail-
able from http://www-mash.cs.berkeley.edu/ns/.

[19] Jon Postel. Transmission Control Protocol: DARPA Internet
Program protocol specification. RFC 793, IETF, September
1981.

[20] Deepinder Sidhu, Anthony Chung, and Thomas P. Blumer. A
formal description technique for protocol engineering. Tech-
nical Report CS-TR-2505, University of Maryland at College
Park, July 1990.

[21] W. Richard Stevens.TCP/IP Illustrated, Volume 1: The Pro-
tocols. Addison-Wesley, 1994.

[22] W. Richard Stevens. TCP slow start, congestion avoidance,
fast retransmit, and fast recovery algorithms. RFC 2001, IETF,
January 1997.

[23] Gregor v. Bochmann. Methods and tools for the design and val-
idation of protocol specifications and implementations. Pub-
lication #596, Universit́e de Montŕeal, October 1986.

[24] Gary R. Wright and W. Richard Stevens.TCP/IP Illustrated,
Volume 2: The Implementation. Addison-Wesley, 1995.

11

