
Statement of Research Interests Eddie Kohler

Many systems today have poor extensibility, flexibility, correctness, and security,
all of which are easier to fix when a system is easy to understand. Understanding
a real, complex software system should be as easy as reading a page or two of code.
This would require high-level comprehension of the system; however, we design
systems with architectures that don’t facilitate higher-level comprehension, and
the tools we use to program, analyze, test, and debug them don’t help either. I
want to create new architectures and tools that will facilitate higher-level compre-
hension and test them on real-world systems. I want to build systems that satisfy
tough performance requirements, but are still flexible and understandable. This
work will combine my interests in systems, programming languages, and software
design with a willingness to rethink the way systems should be built.

As a first approach, I want to treat systems as programming languages, an av-
enue inspired by my graduate school research. In this model, a new programming
language is an integral part of each system. This language specifies system-level
properties, rather than the data layout and control flow issues controlled by lan-
guages like C and C++. Its constructs correspond directly to high-level properties of
the system, which may be different even for two systems in the same domain. (For
example, an operating system language might specify how file systems, network
connections, and other kernel-level objects interact. Different operating systems
would probably have different languages.) A program in the language gives us a
readable, high-level description of the system, and we can manipulate this pro-
gram with language processors to optimize or statically check the system as a
whole.

The first of two projects that inspired this approach is Prolac, an object-oriented
language for network protocol implementation. Prolac was designed to make pro-
tocol implementations readable, modular, extensible, and efficient. It includes
advanced language features, appropriate syntax, tight integration with unforgiving
environments (Unix kernels), and compiler optimizations. Our Prolac TCP imple-
mentation is organized in a new, readable and modular way; for example, each TCP
protocol extension is readably located in one small set of subclasses. The compiler
optimizes most of this organization away, leaving code that performs comparably
to commodity TCPs.

The Prolac language is low-level and detailed, however, which complicates
adoption. Most people don’t want or need to learn another systems programming
language. Therefore, in my next project—the Click modular router—we kept the
programming language higher level, specifying the interaction between compo-
nents rather than the instruction-by-instruction behavior of each component.

Click is an architecture for building software routers from modular components
called elements. Element definitions are written in C++; the Click programming
language specifies how elements should be connected in a particular router. A
router’s high-level behavior is thus exactly determined by its definition in the
Click language. Network administrators can create arbitrary feature combinations



by manipulating easy-to-read Click-language files, rather than by hacking kernel
source code.

Like formal specifications, the Click language can be used to detect errors
statically and to discover global router properties. Unlike formal specifications,
the language compiles into working routers, so people can test and modify the way
their packets are routed by manipulating Click-language files. Programs analogous
to conventional language processors can manipulate these files as well, to optimize
them, analyze them, and so forth. We have written several such programs already: a
pattern-based optimizer that replaces common element arrangements with faster
equivalents; an aligner, which examines a configuration and adds elements to
ensure that packet memory is correctly aligned; and a specializer, which creates
new, faster elements tailored to how the elements in a configuration are actually
being used.

We have implemented the Click architecture on conventional PC hardware
with good results. Click routers are flexible—their configurations can be easily
read, understood, and changed. Already, performance is good enough for many
demanding applications. Furthermore, having the Click language made the core
system better by guiding us towards better internal structures and element designs.

Now I want to expand from these lessons into other systems. While my previous
work has been in networking, my interest in systems is omnivorous. Networking,
operating systems, and distributed applications—particularly over networks of
small devices—all seem like fertile ground for this research. Regardless of area, I
want to build real systems; I believe you learn from interacting with complexity,
and little is more complex than the real world. These new systems probably won’t
be much like Click or Prolac, because they will be tailored for different problems.
Nevertheless, successful system languages may share some basic principles, which
I would like to pin down.

This work is fundamentally interdisciplinary in nature. Building a successful
system language requires expertise in languages, systems in general, and the par-
ticular kind of system being built. I look forward to working in many system areas
through close collaboration with peers and, especially, students.



Statement of Teaching Interests Eddie Kohler

I love learning, and believe it is a responsibility, a privilege, and a joy to teach in
return. My love for learning and teaching is broader than any one field, so much of
this statement is about teaching in general. So far, I have taught classes in program-
ming languages and systems, and would like in future to teach undergraduates or
graduate students in languages, operating systems, networking, and/or elementary
courses. My teaching is driven by flexibility, clarity, and the desire to reach all
students.

At MIT, I have taught informally, as a lab assistant, and twice as a teaching
assistant: for an undergraduate course and a graduate course. My most extensive
teaching experience was the graduate course on programming languages. I taught
recitation (weekly sections with 25 to 30 students) and lecture once or twice when
the professor was out of town; answered students’ questions; led quiz reviews; and
developed course material, including quizzes and code. I was honored with two
awards for the teaching assistantships, one for contributions to students’ writing
skills and one for general excellence.

My goal in teaching is to reach every student. (Many students reported on
evaluations that they “truly believed that [I] cared about their performance in
the course.”) To reach everyone, a teacher must be flexible and provide different
ways to learn the material; then students can choose the ones that work for them.
I concentrate my efforts on clear, intuitive explanations, but let students help
guide the pace and path of my lectures, and use other techniques whenever they
help—from design problems to metaphors to games.

Teaching can also be inspirational, exciting students about computer science
and computer systems. Inspiration, I believe, comes mostly from working on well-
chosen, difficult, and rewarding problems. Lectures are important for providing
intuition, but working on problems is what makes intuition stick; and only solving
problems provides the adrenaline rush of inspiration. I put a lot of effort and
creativity into creating problems and projects that are meant to inspire.

Of course, the most rewarding problems are research problems, and research
and teaching are deeply linked, sharing a concern for the clearest explanation and
the simplest solution. Advising graduate students (and undergraduate researchers)
requires flexibility and excitement, even more than teaching a lecture. But then
the rewards are greater—you end up with a collaborator and a peer.


