1 This clause describes components that C++ programs may use to organize collections of information.
2 The following subclauses describe container requirements, and components for sequences and associative containers, as summarized in Table 63:
Table 63---Containers library summary |
_ ____________________________________ _ Subclause Header(s) _ ____________________________________ ____________________________________ _ 23.1 Requirements ____________________________________ <deque> <list> 23.2 Sequences <queue> <stack> _ <vector> ____________________________________ 23.3 Associative containers <map> <set> _ 23.3.5 bitset <bitset> ____________________________________ |
1 Containers are objects that store other objects. They control allocation and deallocation of these objects through constructors, destructors, insert and erase operations.
2 All of the complexity requirements in this clause are stated solely in terms of the number of operations on the contained objects. [Example: the copy constructor of type vector <vector<int> > has linear complexity, even though the complexity of copying each contained vector<int> is itself linear. ]
3 The type of objects stored in these components must meet the requirements of CopyConstructible types (20.1.3), and the additional requirements of Assignable types.
4 In Table 64, T is the type used to instantiate the container, t is a value of T, and u is a value of (possibly const) T.
Table 64---Assignable requirements |
_ __________________________________________ _ expression return type post-condition _ __________________________________________ __________________________________________ _ t = u T& t is equivalent to u __________________________________________ |
5 In Tables 65 and 66, X denotes a container class containing objects of type T, a and b denote values of type X, u denotes an identifier and r denotes a value of X&.
Table 65---Container requirements | ||
_ _________________________________________________________________________________ expression return type assertion/note complexity _ pre/post-condition _ _________________________________________________________________________________ _________________________________________________________________________________ _ X::value_type T T is Assignable compile time _________________________________________________________________________________ _ X::reference lvalue of T compile time _________________________________________________________________________________ _ X::const_reference const lvalue of T compile time _________________________________________________________________________________ X::iterator iterator type pointing to T any iterator category except compile time output iterator. convertible to _ X::const_iterator. _________________________________________________________________________________ X::const_iterator iterator type pointing to any iterator category except compile time _ const T output iterator. _________________________________________________________________________________ X::difference_type signed integral type is identical to the difference compile time type of X::iterator and _ X::const_iterator _________________________________________________________________________________ X::size_type unsigned integral type size_type can represent compile time any non-negative value of _ difference_type _________________________________________________________________________________ _ X u; post: u.size() == 0. constant _________________________________________________________________________________ _ X(); X().size() == 0. constant _________________________________________________________________________________ _ X(a); a == X(a). linear _________________________________________________________________________________ X u(a); post: u == a. linear _ X u = a; Equivalent to: X u; u = a; _________________________________________________________________________________ (&a)->~X(); void note: the destructor is applied linear to every element of a; all the _ memory is deallocated. _________________________________________________________________________________ a.begin(); iterator; constant const_iterator _ for constant a _________________________________________________________________________________ a.end(); iterator; constant const_iterator _ for constant a _________________________________________________________________________________ a == b convertible to bool == is an equivalence relation. linear a.size()==b.size() && equal(a.begin(), _ a.end(), b.begin()) _________________________________________________________________________________ _ a != b convertible to bool Equivalent to: !(a == b) linear _________________________________________________________________________________ _ a.swap(b); void swap(a,b) (Note A) _________________________________________________________________________________ |
6 The member function size() returns the number of elements in the container. Its semantics is defined by the rules of constructors, inserts, and erases.
7 begin() returns an iterator referring to the first element in the container. end() returns an iterator which is the past-the-end value for the container. If the container is empty, then begin() == end();
8 Copy constructors for all container types defined in this clause copy an allocator argument from their respective first parameters. All other constructors for these container types take an Allocator& argument (20.1.5), an allocator whose value type is the same as the container's value type. A copy of this argument is used for any memory allocation performed, by these constructors and by all member functions, during the lifetime of each container object. In all container types defined in this clause, the member get_allocator() returns a copy of the Allocator object used to construct the container.
9 If the iterator type of a container belongs to the bidirectional or random access iterator categories (24.1), the container is called reversible and satisfies the additional requirements in Table 66:
Table 66---Reversible container requirements |
_ ___________________________________________________________________________________ expression return type assertion/note complexity _ pre/post-condition _ ___________________________________________________________________________________ ___________________________________________________________________________________ X::reverse_ iterator type pointing to T reverse_iterator <itera- compile time _ iterator tor> ___________________________________________________________________________________ X::const_ iterator type pointing to reverse_iterator compile time reverse_ const T <const_iterator> _ iterator ___________________________________________________________________________________ a.rbegin() reverse_iterator; reverse_iterator(end()) constant const_reverse_iterator _ for constant a ___________________________________________________________________________________ a.rend() reverse_iterator; reverse_iterator(begin()) constant const_reverse_iterator _ for constant a ___________________________________________________________________________________ |
10 Unless otherwise specified (see 23.2.1.3 and 23.2.4.3) all container types defined in this clause meet the following additional requirements:
1 A sequence is a kind of container that organizes a finite set of objects, all of the same type, into a strictly linear arrangement. The library provides three basic kinds of sequence containers: vector, list, and deque. It also provides container adaptors that make it easy to construct abstract data types, such as stacks or queues, out of the basic sequence kinds (or out of other kinds of sequences that the user might define).
2 vector, list, and deque offer the programmer different complexity trade-offs and should be used accordingly. vector is the type of sequence that should be used by default. list should be used when there are frequent insertions and deletions from the middle of the sequence. deque is the data structure of choice when most insertions and deletions take place at the beginning or at the end of the sequence.
3 In Tables 67 and 68, X denotes a sequence class, a denotes a value of X, i and j denote iterators satisfying input iterator requirements, [i, j) denotes a valid range, n denotes a value of X::size_type, p and q2 denote valid iterators to a, q and q1 denote valid dereferenceable iterators to a, [q1, q2) denotes a valid range, and t denotes a value of X::value_type.
4 The complexities of the expressions are sequence dependent.
Table 67---Sequence requirements (in addition to container) |
_ _____________________________________________________________________________ expression return type assertion/note _ pre/post-condition _ _____________________________________________________________________________ _____________________________________________________________________________ X(n, t) post: size() == n. _ X a(n, t); constructs a sequence with n copies of t. _____________________________________________________________________________ X(i, j) post: size() == distance between i and j. _ X a(i, j); constructs a sequence equal to the range [i,j). _____________________________________________________________________________ _ a.insert(p,t) iterator inserts a copy of t before p. _____________________________________________________________________________ _ a.insert(p,n,t) void inserts n copies of t before p. _____________________________________________________________________________ a.insert(p,i,j) void pre: i,j are not iterators into a. _ inserts copies of elements in [i,j) before p. _____________________________________________________________________________ _ a.erase(q) iterator erases the element pointed to by q. _____________________________________________________________________________ _ a.erase(q1,q2) iterator erases the elements in the range [q1,q2). _____________________________________________________________________________ a.clear() void erase(begin(), end()) _ post: size() == 0. _____________________________________________________________________________ |
5 iterator and const_iterator types for sequences must be at least of the forward iterator category.
6 The iterator returned from a.insert(p,t) points to the copy of t inserted into a.
7 The iterator returned from a.erase(q) points to the element immediately following q prior to the element being erased. If no such element exists, a.end() is returned.
8 The iterator returned by a.erase(q1,q2) points to the element pointed to by q2 prior to any elements being erased. If no such element exists, a.end() is returned.
9 For every sequence defined in this clause and in clause 21:
shall have the same effect as:template <class InputIterator> X(InputIterator f, InputIterator l, const Allocator& a = Allocator())
if InputIterator is an integral type.X(static_cast<typename X::size_type>(f), static_cast<typename X::value_type>(l), a)
shall have the same effect, respectively, as:template <class InputIterator> // such as insert() rt fx1(iterator p, InputIterator f, InputIterator l); template <class InputIterator> // such as append(), assign() rt fx2(InputIterator f, InputIterator l); template <class InputIterator> // such as replace() rt fx3(iterator i1, iteraror i2, InputIterator f, InputIterator l);
if InputIterator is an integral type.fx1(p, static_cast<typename X::size_type>(f), static_cast<typename X::value_type>(l)); fx2(static_cast<typename X::size_type>(f), static_cast<typename X::value_type>(l)); fx3(i1, i2, static_cast<typename X::size_type>(f), static_cast<typename X::value_type>(l));
10 [Note: This follows directly from the requirements in the Iterator Requirements Table. Integral types cannot be iterators, so, if n1 and n2 are values of an integral type N, the expression X(n1, n2) cannot possibly be interpreted as construction from a range of iterators. It must be taken to mean the first constructor in the Iterator Requirements Table, not the second one. If there is no conversion from N to X::value_type, then this is not a valid expression at all.
11 One way that sequence implementors can satisfy this requirement is to specialize the member template for every integral type. Less cumbersome implementation techniques also exist. ---end note] [Example:
---end example]list<int> x; ... vector<int> y(x.begin(), x.end()); // Construct a vector // from a range of iterators. vector<int> z(100, 1); // Construct a vector of 100 // elements, all initialized // to 1. The arguments are // not interpreted as iterators. z.insert(z.begin(), x.begin(), x.end());// Insert a range of // iterators. z.insert(z.begin(), 20, 0); // Insert 20 copies of the // number 0.
12 The operations in Table 68 are provided only for the containers for which they take constant time:
Table 68---Optional sequence operations |
_ _____________________________________________________________________________________ expression return type operational container _ semantics _ _____________________________________________________________________________________ _____________________________________________________________________________________ a.front() reference; *a.begin() vector, list, deque const_reference _ for constant a _____________________________________________________________________________________ a.back() reference; *--a.end() vector, list, deque const_reference _ for constant a _____________________________________________________________________________________ _ a.push_front(x) void a.insert(a.begin(),x) list, deque _____________________________________________________________________________________ _ a.push_back(x) void a.insert(a.end(),x) vector, list, deque _____________________________________________________________________________________ _ a.pop_front() void a.erase(a.begin()) list, deque _____________________________________________________________________________________ _ a.pop_back() void a.erase(--a.end()) vector, list, deque _____________________________________________________________________________________ a[n] reference; *(a.begin() + n) vector, deque const_reference _ for constant a _____________________________________________________________________________________ a.at(n) reference; *(a.begin() + n) vector, deque const_reference _ for constant a _____________________________________________________________________________________ |
13 The member function at() provides bounds-checked access to container elements. at() throws out_of_range if n >= a.size().
1 Associative containers provide an ability for fast retrieval of data based on keys. The library provides four basic kinds of associative containers: set, multiset, map and multimap.
2 Each associative container is parameterized on Key and an ordering relation Compare that induces a strict weak ordering (25.3) on elements of Key. In addition, map and multimap associate an arbitrary type T with the Key. The object of type Compare is called the comparison object of a container. This comparison object may be a pointer to function or an object of a type with an appropriate function call operator.
3 The phrase ``equivalence of keys'' means the equivalence relation imposed by the comparison and not the operator== on keys. That is, two keys k1 and k2 are considered to be equivalent if for the comparison object comp, comp(k1, k2) == false && comp(k2, k1) == false.
4 An associative container supports unique keys if it may contain at most one element for each key. Otherwise, it supports equivalent keys. set and map support unique keys. multiset and multimap support equivalent keys.
5 For set and multiset the value type is the same as the key type. For map and multimap it is equal to pair<const Key, T>.
6 iterator of an associative container is of the bidirectional iterator category.
7 In Table 69, X is an associative container class, a is a value of X, a_uniq is a value of X when X supports unique keys, and a_eq is a value of X when X supports multiple keys, i and j satisfy input iterator requirements and refer to elements of value_type, [i, j) is a valid range, p and q2 are valid iterators to a, q and q1 are valid dereferenceable iterators to a, [q1, q2) is a valid range, t is a value of X::value_type, k is a value of X::key_type and c is a value of type X::key_compare.
Table 69---Associative container requirements (in addition to container) | ||
_ __________________________________________________________________________________ expression return type assertion/note complexity _ pre/post-condition _ __________________________________________________________________________________ __________________________________________________________________________________ _ X::key_type Key Key is Assignable compile time __________________________________________________________________________________ _ X::key_compare Compare defaults to less<key_type> compile time __________________________________________________________________________________ X:: a binary predi- is the same as key_compare for set compile time value_compare cate type and multiset; is an ordering relation on pairs induced by the first component _ (i.e. Key) for map and multimap. __________________________________________________________________________________ X(c) constructs an empty container; constant _ X a(c); uses c as a comparison object __________________________________________________________________________________ X() constructs an empty container; constant _ X a; uses Compare() as a comparison object __________________________________________________________________________________ X(i,j,c); constructs an empty container and inserts NlogN in general (N is X a(i,j,c); elements from the range [i, j) into it; the distance from i to uses c as a comparison object j); linear if [i, j) is sorted with _ value_comp() __________________________________________________________________________________ X(i, j) same as above, but uses Compare() as same as above a comparison object. _ X a(i, j); __________________________________________________________________________________ a.key_comp() X::key_compare returns the comparison object out of constant _ which a was constructed. __________________________________________________________________________________ a.value_comp() X:: returns an object of value_compare constant _ value_compare constructed out of the comparison object __________________________________________________________________________________ a_uniq. pair<iterator, inserts t if and only if there is no element logarithmic insert(t) bool> in the container with key equivalent to the key of t. The bool component of the returned pair indicates whether the insertion takes place and the iterator component of the pair points to the ele_ ment with key equivalent to the key of t. __________________________________________________________________________________ a_eq.insert(t) iterator inserts t and returns the iterator pointing logarithmic _ to the newly inserted element. __________________________________________________________________________________ |
8 The insert members shall not affect the validity of iterators and references to the container, and the erase members shall invalidate only iterators and references to the erased elements.
9 The fundamental property of iterators of associative containers is that they iterate through the containers in the non-descending order of keys where non-descending is defined by the comparison that was used to construct them. For any two dereferenceable iterators i and j such that distance from i to j is positive,
value_comp(*j, *i) == false
10 For associative containers with unique keys the stronger condition holds,
value_comp(*i, *j) != false.
11 When an associative container is constructed by passing a comparison object the container shall not store a pointer or reference to the passed object, even if that object is passed by reference. When an associative container is copied, either through a copy constructor or an assignment operator, the target container shall then use the comparison object from the container being copied, as if that comparison object had been passed to the target container in its constructor.
1 Headers <deque>, <list>, <queue>, <stack>, and <vector>. Header <deque> synopsis
Header <list> synopsisnamespace std { template <class T, class Allocator = allocator<T> > class deque; template <class T, class Allocator> bool operator== (const deque<T,Allocator>& x, const deque<T,Allocator>& y); template <class T, class Allocator> bool operator< (const deque<T,Allocator>& x, const deque<T,Allocator>& y); template <class T, class Allocator> bool operator!= (const deque<T,Allocator>& x, const deque<T,Allocator>& y); template <class T, class Allocator> bool operator> (const deque<T,Allocator>& x, const deque<T,Allocator>& y); template <class T, class Allocator> bool operator>= (const deque<T,Allocator>& x, const deque<T,Allocator>& y); template <class T, class Allocator> bool operator<= (const deque<T,Allocator>& x, const deque<T,Allocator>& y); template <class T, class Allocator> void swap(deque<T,Allocator>& x, deque<T,Allocator>& y); }
Header <queue> synopsisnamespace std { template <class T, class Allocator = allocator<T> > class list; template <class T, class Allocator> bool operator==(const list<T,Allocator>& x, const list<T,Allocator>& y); template <class T, class Allocator> bool operator< (const list<T,Allocator>& x, const list<T,Allocator>& y); template <class T, class Allocator> bool operator!=(const list<T,Allocator>& x, const list<T,Allocator>& y); template <class T, class Allocator> bool operator> (const list<T,Allocator>& x, const list<T,Allocator>& y); template <class T, class Allocator> bool operator>=(const list<T,Allocator>& x, const list<T,Allocator>& y); template <class T, class Allocator> bool operator<=(const list<T,Allocator>& x, const list<T,Allocator>& y); template <class T, class Allocator> void swap(list<T,Allocator>& x, list<T,Allocator>& y); }
Header <stack> synopsisnamespace std { template <class T, class Container = deque<T> > class queue; template <class T, class Container> bool operator==(const queue<T, Container>& x, const queue<T, Container>& y); template <class T, class Container> bool operator< (const queue<T, Container>& x, const queue<T, Container>& y); template <class T, class Container> bool operator!=(const queue<T, Container>& x, const queue<T, Container>& y); template <class T, class Container> bool operator> (const queue<T, Container>& x, const queue<T, Container>& y); template <class T, class Container> bool operator>=(const queue<T, Container>& x, const queue<T, Container>& y); template <class T, class Container> bool operator<=(const queue<T, Container>& x, const queue<T, Container>& y); template <class T, class Container = vector<T>, class Compare = less<typename Container::value_type> > class priority_queue; }
Header <vector> synopsisnamespace std { template <class T, class Container = deque<T> > class stack; template <class T, class Container> bool operator==(const stack<T, Container>& x, const stack<T, Container>& y); template <class T, class Container> bool operator< (const stack<T, Container>& x, const stack<T, Container>& y); template <class T, class Container> bool operator!=(const stack<T, Container>& x, const stack<T, Container>& y); template <class T, class Container> bool operator> (const stack<T, Container>& x, const stack<T, Container>& y); template <class T, class Container> bool operator>=(const stack<T, Container>& x, const stack<T, Container>& y); template <class T, class Container> bool operator<=(const stack<T, Container>& x, const stack<T, Container>& y); }
namespace std { template <class T, class Allocator = allocator<T> > class vector; template <class T, class Allocator> bool operator==(const vector<T,Allocator>& x, const vector<T,Allocator>& y); template <class T, class Allocator> bool operator< (const vector<T,Allocator>& x, const vector<T,Allocator>& y); template <class T, class Allocator> bool operator!=(const vector<T,Allocator>& x, const vector<T,Allocator>& y); template <class T, class Allocator> bool operator> (const vector<T,Allocator>& x, const vector<T,Allocator>& y); template <class T, class Allocator> bool operator>=(const vector<T,Allocator>& x, const vector<T,Allocator>& y); template <class T, class Allocator> bool operator<=(const vector<T,Allocator>& x, const vector<T,Allocator>& y); template <class T, class Allocator> void swap(vector<T,Allocator>& x, vector<T,Allocator>& y); template <class Allocator> class vector<bool,Allocator>; template <class Allocator> bool operator==(const vector<bool,Allocator>& x, const vector<bool,Allocator>& y); template <class Allocator> bool operator< (const vector<bool,Allocator>& x, const vector<bool,Allocator>& y); template <class Allocator> bool operator!=(const vector<bool,Allocator>& x, const vector<bool,Allocator>& y); template <class Allocator> bool operator> (const vector<bool,Allocator>& x, const vector<bool,Allocator>& y); template <class Allocator> bool operator>=(const vector<bool,Allocator>& x, const vector<bool,Allocator>& y); template <class Allocator> bool operator<=(const vector<bool,Allocator>& x, const vector<bool,Allocator>& y); template <class Allocator> void swap(vector<bool,Allocator>& x, vector<bool,Allocator>& y); }
1 A deque is a kind of sequence that, like a vector (23.2.4), supports random access iterators. In addition, it supports constant time insert and erase operations at the beginning or the end; insert and erase in the middle take linear time. That is, a deque is especially optimized for pushing and popping elements at the beginning and end. As with vectors, storage management is handled automatically.
2 A deque satisfies all of the requirements of a container and of a reversible container (given in tables in 23.1) and of a sequence, including the optional sequence requirements (23.1.1). Descriptions are provided here only for operations on deque that are not described in one of these tables or for operations where there is additional semantic information.
// 23.2.1.1 construct/copy/destroy: explicit deque(const Allocator& = Allocator()); explicit deque(size_type n, const T& value = T(),namespace std { template <class T, class Allocator = allocator<T> > class deque { public: // types: typedef typename Allocator::reference reference; typedef typename Allocator::const_reference const_reference; typedef implementation defined iterator; // See 23.1 typedef implementation defined const_iterator; // See 23.1 typedef implementation defined size_type; // See 23.1 typedef implementation defined difference_type; // See 23.1 typedef T value_type; typedef Allocator allocator_type; typedef typename Allocator::pointer pointer; typedef typename Allocator::const_pointer const_pointer; typedef std::reverse_iterator<iterator> reverse_iterator; typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
template <class InputIterator>const Allocator& = Allocator());
deque(const deque<T,Allocator>& x); ~deque(); deque<T,Allocator>& operator=(const deque<T,Allocator>& x); template <class InputIterator>deque(InputIterator first, InputIterator last, const Allocator& = Allocator());
void assign(size_type n, const T& t); allocator_type get_allocator() const; // iterators: iterator begin(); const_iterator begin() const; iterator end(); const_iterator end() const; reverse_iterator rbegin(); const_reverse_iterator rbegin() const; reverse_iterator rend(); const_reverse_iterator rend() const; // 23.2.1.2 capacity: size_type size() const; size_type max_size() const; void resize(size_type sz, T c = T()); bool empty() const; // element access: reference operator[](size_type n); const_reference operator[](size_type n) const; reference at(size_type n); const_reference at(size_type n) const; reference front(); const_reference front() const; reference back(); const_reference back() const; // 23.2.1.3 modifiers: void push_front(const T& x); void push_back(const T& x); iterator insert(iterator position, const T& x); void insert(iterator position, size_type n, const T& x); template <class InputIterator>void assign(InputIterator first, InputIterator last);
void pop_front(); void pop_back(); iterator erase(iterator position); iterator erase(iterator first, iterator last); void swap(deque<T,Allocator>&); void clear(); };void insert (iterator position, InputIterator first, InputIterator last);
template <class T, class Allocator> bool operator==(const deque<T,Allocator>& x, const deque<T,Allocator>& y); template <class T, class Allocator> bool operator< (const deque<T,Allocator>& x, const deque<T,Allocator>& y); template <class T, class Allocator> bool operator!=(const deque<T,Allocator>& x, const deque<T,Allocator>& y); template <class T, class Allocator> bool operator> (const deque<T,Allocator>& x, const deque<T,Allocator>& y); template <class T, class Allocator> bool operator>=(const deque<T,Allocator>& x, const deque<T,Allocator>& y); template <class T, class Allocator> bool operator<=(const deque<T,Allocator>& x, const deque<T,Allocator>& y); // specialized algorithms: template <class T, class Allocator> void swap(deque<T,Allocator>& x, deque<T,Allocator>& y);
}
explicit deque(const Allocator& = Allocator());
1 Effects: Constructs an empty deque, using the specified allocator.
2 Complexity: Constant.
explicit deque(size_type n, const T& value = T(), const Allocator& = Allocator());
3 Effects: Constructs a deque with n copies of value, using the specified allocator.
4 Complexity: Linear in n.
template <class InputIterator> deque(InputIterator first, InputIterator last, const Allocator& = Allocator());
5 Effects: Constructs a deque equal to the the range [first, last), using the specified allocator.
6 Complexity: If the iterators first and last are forward iterators, bidirectional iterators, or random access iterators the constructor makes only N calls to the copy constructor, and performs no reallocations, where N is last - first. It makes at most 2N calls to the copy constructor of T and log N reallocations if they are input iterators.246) template <class InputIterator>
void assign(InputIterator first, InputIterator last);
7 Effects:
erase(begin(), end()); insert(begin(), first, last);
void assign(size_type n, const T& t);
8 Effects:
erase(begin(), end()); insert(begin(), n, t);
246) The complexity is greater in the case of input iterators because each element must be added individually: it is impossible to determine the distance between first abd last before doing the copying. [back to text]
void resize(size_type sz, T c = T());
1 Effects:
if (sz > size()) insert(end(), sz-size(), c); else if (sz < size()) erase(begin()+sz, end()); else ; // do nothing
iterator insert(iterator position, const T& x); void insert(iterator position, size_type n, const T& x); template <class InputIterator> void insert(iterator position, InputIterator first, InputIterator last);
1 Effects: An insert in the middle of the deque invalidates all the iterators and references to elements of the deque. An insert at either end of the deque invalidates all the iterators to the deque, but has no effect on the validity of references to elements of the deque.
2 Notes: If an exception is thrown other than by the copy constructor or assignment operator of T there are no effects.
3 Complexity: In the worst case, inserting a single element into a deque takes time linear in the minimum of the distance from the insertion point to the beginning of the deque and the distance from the insertion point to the end of the deque. Inserting a single element either at the beginning or end of a deque always takes constant time and causes a single call to the copy constructor of T.
iterator erase(iterator position); iterator erase(iterator first, iterator last);
4 Effects: An erase in the middle of the deque invalidates all the iterators and references to elements of the deque. An erase at either end of the deque invalidates only the iterators and the references to the erased elements.
5 Complexity: The number of calls to the destructor is the same as the number of elements erased, but the number of the calls to the assignment operator is at most equal to the minimum of the number of elements before the erased elements and the number of elements after the erased elements.
6 Throws: Nothing unless an exception is thrown by the copy constructor or assignment operator of T.
template <class T, class Allocator> void swap(deque<T,Allocator>& x, deque<T,Allocator>& y);
1 Effects:
x.swap(y);
1 A list is a kind of sequence that supports bidirectional iterators and allows constant time insert and erase operations anywhere within the sequence, with storage management handled automatically. Unlike vectors (23.2.4) and deques (23.2.1), fast random access to list elements is not supported, but many algorithms only need sequential access anyway.
2 A list satisfies all of the requirements of a container and of a reversible container (given in two tables in 23.1) and of a sequence, including most of the the optional sequence requirements (23.1.1). The exceptions are the operator[] and at member functions, which are not provided.247) Descriptions are provided here only for operations on list that are not described in one of these tables or for operations where there is additional semantic information.
// 23.2.2.2 capacity: bool empty() const; size_type size() const; size_type max_size() const; void resize(size_type sz, T c = T()); // element access: reference front(); const_reference front() const; reference back(); const_reference back() const; // 23.2.2.3 modifiers: void push_front(const T& x); void pop_front(); void push_back(const T& x); void pop_back(); iterator insert(iterator position, const T& x); void insert(iterator position, size_type n, const T& x); template <class InputIterator>namespace std { template <class T, class Allocator = allocator<T> > class list { public: // types: typedef typename Allocator::reference reference; typedef typename Allocator::const_reference const_reference; typedef implementation defined iterator; // See 23.1 typedef implementation defined const_iterator; // See 23.1 typedef implementation defined size_type; // See 23.1 typedef implementation defined difference_type;// See 23.1 typedef T value_type; typedef Allocator allocator_type; typedef typename Allocator::pointer pointer; typedef typename Allocator::const_pointer const_pointer; typedef std::reverse_iterator<iterator> reverse_iterator; typedef std::reverse_iterator<const_iterator> const_reverse_iterator; // 23.2.2.1 construct/copy/destroy: explicit list(const Allocator& = Allocator()); explicit list(size_type n, const T& value = T(), const Allocator& = Allocator()); template <class InputIterator> list(InputIterator first, InputIterator last, const Allocator& = Allocator()); list(const list<T,Allocator>& x); ~list(); list<T,Allocator>& operator=(const list<T,Allocator>& x); template <class InputIterator> void assign(InputIterator first, InputIterator last); void assign(size_type n, const T& t); allocator_type get_allocator() const; // iterators: iterator begin(); const_iterator begin() const; iterator end(); const_iterator end() const; reverse_iterator rbegin(); const_reverse_iterator rbegin() const; reverse_iterator rend(); const_reverse_iterator rend() const;
iterator erase(iterator position); iterator erase(iterator position, iterator last); void swap(list<T,Allocator>&); void clear(); // 23.2.2.4 list operations: void splice(iterator position, list<T,Allocator>& x); void splice(iterator position, list<T,Allocator>& x, iterator i); void splice(iterator position, list<T,Allocator>& x, iterator first,void insert(iterator position, InputIterator first, InputIterator last);
void remove(const T& value); template <class Predicate> void remove_if(Predicate pred); void unique(); template <class BinaryPredicate>iterator last);
void merge(list<T,Allocator>& x); template <class Compare> void merge(list<T,Allocator>& x, Compare comp); void sort(); template <class Compare> void sort(Compare comp); void reverse(); };void unique(BinaryPredicate binary_pred);
template <class T, class Allocator> bool operator==(const list<T,Allocator>& x, const list<T,Allocator>& y); template <class T, class Allocator> bool operator< (const list<T,Allocator>& x, const list<T,Allocator>& y); template <class T, class Allocator> bool operator!=(const list<T,Allocator>& x, const list<T,Allocator>& y); template <class T, class Allocator> bool operator> (const list<T,Allocator>& x, const list<T,Allocator>& y); template <class T, class Allocator> bool operator>=(const list<T,Allocator>& x, const list<T,Allocator>& y); template <class T, class Allocator> bool operator<=(const list<T,Allocator>& x, const list<T,Allocator>& y); // specialized algorithms: template <class T, class Allocator> void swap(list<T,Allocator>& x, list<T,Allocator>& y);
}
247) These member functions are only provided by containers whose iterators are random access iterators. [back to text]
explicit list(const Allocator& = Allocator());
1 Effects: Constructs an empty list, using the specified allocator.
2 Complexity: Constant.
explicit list(size_type n, const T& value = T(), const Allocator& = Allocator());
3 Effects: Constructs a list with n copies of value, using the specified allocator.
4 Complexity: Linear in n.
template <class InputIterator> list(InputIterator first, InputIterator last, const Allocator& = Allocator());
5 Effects: Constructs a list equal to the range [first, last).
6 Complexity: Linear in first - last.
template <class InputIterator> void assign(InputIterator first, InputIterator last);
7 Effects:
erase(begin(), end()); insert(begin(), first, last);
void assign(size_type n, const T& t);
8 Effects:
erase(begin(), end()); insert(begin(), n, t);
void resize(size_type sz, T c = T());
1 Effects:
if (sz > size()) insert(end(), sz-size(), c); else if (sz < size()) erase(begin()+sz, end()); else ; // do nothing
iterator insert(iterator position, const T& x); void insert(iterator position, size_type n, const T& x); template <class InputIterator> void insert(iterator position, InputIterator first, InputIterator last); void push_front(const T& x); void push_back(const T& x);
1 Notes: Does not affect the validity of iterators and references. If an exception is thrown there are no effects.
2 Complexity: Insertion of a single element into a list takes constant time and exactly one call to the copy constructor of T. Insertion of multiple elements into a list is linear in the number of elements inserted, and the number of calls to the copy constructor of T is exactly equal to the number of elements inserted. iterator erase(iterator position); iterator erase(iterator first, iterator last); void pop_front(); void pop_back(); void clear();
3 Effects: Invalidates only the iterators and references to the erased elements.
4 Throws: Nothing.
5 Complexity: Erasing a single element is a constant time operation with a single call to the destructor of T. Erasing a range in a list is linear time in the size of the range and the number of calls to the destructor of type T is exactly equal to the size of the range.
1 Since lists allow fast insertion and erasing from the middle of a list, certain operations are provided specifically for them.
2 list provides three splice operations that destructively move elements from one list to another.
void splice(iterator position, list<T,Allocator>& x);
3 Requires: &x != this.
4 Effects: Inserts the contents of x before position and x becomes empty. Invalidates all iterators and references to the list x.
5 Throws: Nothing
6 Complexity: Constant time.
void splice(iterator position, list<T,Allocator>& x, iterator i);
7 Effects: Inserts an element pointed to by i from list x before position and removes the element from x. The result is unchanged if position == i or position == ++i. Invalidates only the iterators and references to the spliced element.
8 Throws: Nothing
9 Requires: i is a valid dereferenceable iterator of x.
10 Complexity: Constant time.
void splice(iterator position, list<T,Allocator>& x, iterator first, iterator last);
11 Effects: Inserts elements in the range [first, last) before position and removes the elements from x.
12 Requires: [first, last) is a valid range in x. The result is undefined if position is an iterator in the range [first, last). Invalidates only the iterators and references to the spliced elements.
13 Throws: Nothing
14 Complexity: Constant time if &x == this; otherwise, linear time.
void remove(const T& value);
template <class Predicate> void remove_if(Predicate pred);
15 Effects: Erases all the elements in the list referred by a list iterator i for which the following conditions hold: *i == value, pred(*i) != false.
16 Throws: Nothing unless an exception is thrown by *i == value or pred(*i) != false.
17 Notes: Stable: the relative order of the elements that are not removed is the same as their relative order in the original list.
18 Complexity: Exactly size() applications of the corresponding predicate.
void unique();
template <class BinaryPredicate> void unique(BinaryPredicate binary_pred);
19 Effects: Eliminates all but the first element from every consecutive group of equal elements referred to by the iterator i in the range [first + 1, last) for which *i == *(i-1) (for the version of unique with no arguments) or pred(*i, *(i - 1)) (for the version of unique with a predicate argument) holds.
20 Throws: Nothing unless an exception in thrown by *i == *(i-1) or pred(*i, *(i - 1))
21 Complexity: If the range (last - first) is not empty, exactly (last - first) - 1 applications of the corresponding predicate, otherwise no applications of the predicate.
void merge(list<T,Allocator>& x); template <class Compare> void merge(list<T,Allocator>& x, Compare comp);
22 Requires: comp defines a strict weak ordering (25.3), and the list and the argument list are both sorted according to this ordering.
23 Effects: Merges the argument list into the list.
24 Notes: Stable: for equivalent elements in the two lists, the elements from the list always precede the elements from the argument list. x is empty after the merge.
25 Complexity: At most size() + x.size() - 1 comparisons. If an exception is thrown other than by a comparison there are no effects.
void reverse();
26 Effects: Reverses the order of the elements in the list.
27 Throws: Nothing.
28 Complexity: Linear time.
template <class Compare> void sort(Compare comp);void sort();
29 Requires: operator< (for the first version, or comp (for the second version) defines a strict weak ordering (25.3).
30 Effects: Sorts the list according to the operator< or a Compare function object.
31 Notes: Stable: the relative order of the equivalent elements is preserved. If an exception is thrown the order of the elements in the list is indeterminate.
32 Complexity: Approximately NlogN comparisons, where N == size().
void swap(list<T,Allocator>& x, list<T,Allocator>& y);
1 Effects:
x.swap(y);
1 The container adaptors each take a Container template parameter, and each constructor takes a Container reference argument. This container is copied into the Container member of each adaptor.
1 Any sequence supporting operations front(), back(), push_back() and pop_front() can be used to instantiate queue. In particular, list (23.2.2) and deque (23.2.1) can be used.
namespace std { template <class T, class Container = deque<T> > class queue { public: typedef typename Container::value_type value_type; typedef typename Container::size_type size_type; typedef Container container_type; protected: Container c; public: explicit queue(const Container& = Container()); bool empty() const { return c.empty(); } size_type size() const { return c.size(); } value_type& front() { return c.front(); } const value_type& front() const { return c.front(); } value_type& back() { return c.back(); } const value_type& back() const { return c.back(); } void push(const value_type& x) { c.push_back(x); } void pop() { c.pop_front(); } }; template <class T, class Container> bool operator==(const queue<T, Container>& x, const queue<T, Container>& y); template <class T, class Container> bool operator< (const queue<T, Container>& x, const queue<T, Container>& y); template <class T, class Container> bool operator!=(const queue<T, Container>& x, const queue<T, Container>& y); template <class T, class Container> bool operator> (const queue<T, Container>& x, const queue<T, Container>& y); template <class T, class Container> bool operator>=(const queue<T, Container>& x, const queue<T, Container>& y); template <class T, class Container> bool operator<=(const queue<T, Container>& x, const queue<T, Container>& y); } operator==
2 Returns: x.c == y.c.
operator<
3 Returns: x.c < y.c.
1 Any sequence with random access iterator and supporting operations front(), push_back() and pop_back() can be used to instantiate priority_queue. In particular, vector (23.2.4) and deque (23.2.1) can be used. Instantiating priority_queue also involves supplying a function or function object for making priority comparisons; the library assumes that the function or function object defines a strict weak ordering (25.3).
namespace std { template <class T, class Container = vector<T>, class Compare = less<typename Container::value_type> > class priority_queue { public: typedef typename Container::value_type value_type; typedef typename Container::size_type size_type; typedef Container container_type; protected: Container c; Compare comp; public: explicit priority_queue(const Compare& x = Compare(), const Container& = Container()); template <class InputIterator> priority_queue(InputIterator first, InputIterator last, const Compare& x = Compare(), const Container& = Container()); bool empty() const { return c.empty(); } size_type size() const { return c.size(); } const value_type& top() const { return c.front(); } void push(const value_type& x); void pop(); }; // no equality is provided }
priority_queue(const Compare& x = Compare(), const Container& y = Container());
1 Requires: x defines a strict weak ordering (25.3).
2 Effects: Initializes comp with x and c with y; calls make_heap(c.begin(), c.end(), comp).
template <class InputIterator> priority_queue(InputIterator first, InputIterator last, const Compare& x = Compare(), const Container& y = Container());
3 Requires: x defines a strict weak ordering (25.3).
4 Effects: Initializes c with y and comp with x; calls c.insert(c.end(), first, last); and finally calls make_heap(c.begin(), c.end(), comp).
void push(const value_type& x);
1 Effects:
c.push_back(x); push_heap(c.begin(), c.end(), comp);
void pop();
2 Effects:
pop_heap(c.begin(), c.end(), comp); c.pop_back();
1 Any sequence supporting operations back(), push_back() and pop_back() can be used to instantiate stack. In particular, vector (23.2.4), list (23.2.2) and deque (23.2.1) can be used.
namespace std { template <class T, class Container = deque<T> > class stack { public: typedef typename Container::value_type value_type; typedef typename Container::size_type size_type; typedef Container container_type; protected: Container c; public: explicit stack(const Container& = Container()); bool empty() const { return c.empty(); } size_type size() const { return c.size(); } value_type& top() { return c.back(); } const value_type& top() const { return c.back(); } void push(const value_type& x) { c.push_back(x); } void pop() { c.pop_back(); } }; template <class T, class Container> bool operator==(const stack<T, Container>& x, const stack<T, Container>& y); template <class T, class Container> bool operator< (const stack<T, Container>& x, const stack<T, Container>& y); template <class T, class Container> bool operator!=(const stack<T, Container>& x, const stack<T, Container>& y); template <class T, class Container> bool operator> (const stack<T, Container>& x, const stack<T, Container>& y); template <class T, class Container> bool operator>=(const stack<T, Container>& x, const stack<T, Container>& y); template <class T, class Container> bool operator<=(const stack<T, Container>& x, const stack<T, Container>& y); }
1 A vector is a kind of sequence that supports random access iterators. In addition, it supports (amortized) constant time insert and erase operations at the end; insert and erase in the middle take linear time. Storage management is handled automatically, though hints can be given to improve efficiency.
2 A vector satisfies all of the requirements of a container and of a reversible container (given in two tables in 23.1) and of a sequence, including most of the optional sequence requirements (23.1.1). The exceptions are the push_front and pop_front member functions, which are not provided. Descriptions are provided here only for operations on vector that are not described in one of these tables or for operations where there is additional semantic information.
// 23.2.4.1 construct/copy/destroy: explicit vector(const Allocator& = Allocator()); explicit vector(size_type n, const T& value = T(),namespace std { template <class T, class Allocator = allocator<T> > class vector { public: // types: typedef typename Allocator::reference reference; typedef typename Allocator::const_reference const_reference; typedef implementation defined iterator; // See 23.1 typedef implementation defined const_iterator; // See 23.1 typedef implementation defined size_type; // See 23.1 typedef implementation defined difference_type;// See 23.1 typedef T value_type; typedef Allocator allocator_type; typedef typename Allocator::pointer pointer; typedef typename Allocator::const_pointer const_pointer typedef std::reverse_iterator<iterator> reverse_iterator; typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
template <class InputIterator>const Allocator& = Allocator());
vector(const vector<T,Allocator>& x); ~vector(); vector<T,Allocator>& operator=(const vector<T,Allocator>& x); template <class InputIterator>vector(InputIterator first, InputIterator last, const Allocator& = Allocator());
void assign(size_type n, const T& u); allocator_type get_allocator() const; // iterators: iterator begin(); const_iterator begin() const; iterator end(); const_iterator end() const; reverse_iterator rbegin(); const_reverse_iterator rbegin() const; reverse_iterator rend(); const_reverse_iterator rend() const; // 23.2.4.2 capacity: size_type size() const; size_type max_size() const; void resize(size_type sz, T c = T()); size_type capacity() const; bool empty() const; void reserve(size_type n); // element access: reference operator[](size_type n); const_reference operator[](size_type n) const; const_reference at(size_type n) const; reference at(size_type n); reference front(); const_reference front() const; reference back(); const_reference back() const; // 23.2.4.3 modifiers: void push_back(const T& x); void pop_back(); iterator insert(iterator position, const T& x); void insert(iterator position, size_type n, const T& x); template <class InputIterator>void assign(InputIterator first, InputIterator last);
iterator erase(iterator position); iterator erase(iterator first, iterator last); void swap(vector<T,Allocator>&); void clear(); };void insert(iterator position, InputIterator first, InputIterator last);
template <class T, class Allocator> bool operator==(const vector<T,Allocator>& x, const vector<T,Allocator>& y); template <class T, class Allocator> bool operator< (const vector<T,Allocator>& x, const vector<T,Allocator>& y); template <class T, class Allocator> bool operator!=(const vector<T,Allocator>& x, const vector<T,Allocator>& y); template <class T, class Allocator> bool operator> (const vector<T,Allocator>& x, const vector<T,Allocator>& y); template <class T, class Allocator> bool operator>=(const vector<T,Allocator>& x, const vector<T,Allocator>& y); template <class T, class Allocator> bool operator<=(const vector<T,Allocator>& x, const vector<T,Allocator>& y); // specialized algorithms: template <class T, class Allocator> void swap(vector<T,Allocator>& x, vector<T,Allocator>& y);
}
vector(const Allocator& = Allocator()); explicit vector(size_type n, const T& value = T(), const Allocator& = Allocator()); template <class InputIterator> vector(InputIterator first, InputIterator last, const Allocator& = Allocator()); vector(const vector<T,Allocator>& x);
1 Complexity: The constructor template <class InputIterator> vector(InputIterator
distance between first and last) and no reallocations if iterators first and last are of forward, bidirectional, or random access categories. It does at most 2N calls to the copy constructor of T and logN reallocations if they are just input iterators, since it is impossible to determine the distance between first and last and then do copying.first, InputIterator last) makes only N calls to the copy constructor of T (where N is the
template <class InputIterator> void assign(InputIterator first, InputIterator last);
2 Effects:
erase(begin(), end()); insert(begin(), first, last);
void assign(size_type n, const T& t);
3 Effects:
erase(begin(), end()); insert(begin(), n, t);
size_type capacity() const;
1 Returns: The total number of elements that the vector can hold without requiring reallocation.
void reserve(size_type n);
2 Effects: A directive that informs a vector of a planned change in size, so that it can manage the storage allocation accordingly. After reserve(), capacity() is greater or equal to the argument of reserve if reallocation happens; and equal to the previous value of capacity() otherwise. Reallocation happens at this point if and only if the current capacity is less than the argument of reserve().
3 Complexity: It does not change the size of the sequence and takes at most linear time in the size of the sequence.
4 Throws: length_error if n > max_size().248)
5 Notes: Reallocation invalidates all the references, pointers, and iterators referring to the elements in the sequence. It is guaranteed that no reallocation takes place during insertions that happen after a call to reserve() until the time when an insertion would make the size of the vector greater than the size specified in the most recent call to reserve().
void resize(size_type sz, T c = T());
6 Effects:
if (sz > size()) insert(end(), sz-size(), c); else if (sz < size()) erase(begin()+sz, end()); else ; // do nothing
248) reserve() uses Allocator::allocate() which may throw an appropriate exception. [back to text]
iterator insert(iterator position, const T& x); void insert(iterator position, size_type n, const T& x); template <class InputIterator> void insert(iterator position, InputIterator first, InputIterator last);
1 Notes: Causes reallocation if the new size is greater than the old capacity. If no reallocation happens, all the iterators and references before the insertion point remain valid. If an exception is thrown other than by the copy constructor or assignment operator of T there are no effects.
2 Complexity: If first and last are forward iterators, bidirectional iterators, or random access iterators, the complexity is linear in the number of elements in the range [first, last) plus the distance to the end of the vector. If they are input iterators, the complexity is proportional to the number of elements in the range [first, last) times the distance to the end of the vector.
iterator erase(iterator position); iterator erase(iterator first, iterator last);
3 Effects: Invalidates all the iterators and references after the point of the erase.
4 Complexity: The destructor of T is called the number of times equal to the number of the elements erased, but the assignment operator of T is called the number of times equal to the number of elements in the vector after the erased elements.
5 Throws: Nothing unless an exception is thrown by the copy constructor or assignment operator of T.
template <class T, class Allocator> void swap(vector<T,Allocator>& x, vector<T,Allocator>& y);
1 Effects:
x.swap(y);
1 To optimize space allocation, a specialization of vector for bool elements is provided:
namespace std { template <class Allocator> class vector<bool, Allocator> { public: // types: typedef bool const_reference; typedef implementation defined iterator; // See 23.1 typedef implementation defined const_iterator; // See 23.1 typedef implementation defined size_type; // See 23.1 typedef implementation defined difference_type;// See 23.1 typedef bool value_type; typedef Allocator allocator_type; typedef implementation defined pointer; typedef implementation defined const_pointer typedef std::reverse_iterator<iterator> reverse_iterator; typedef std::reverse_iterator<const_iterator> const_reverse_iterator; // bit reference: class reference { friend class vector; reference(); public: ~reference(); operator bool() const; reference& operator=(const bool x); reference& operator=(const reference& x); void flip(); // flips the bit }; // construct/copy/destroy: explicit vector(const Allocator& = Allocator()); explicit vector(size_type n, const bool& value = bool(), const Allocator& = Allocator()); template <class InputIterator> vector(InputIterator first, InputIterator last, const Allocator& = Allocator()); vector(const vector<bool,Allocator>& x); ~vector(); vector<bool,Allocator>& operator=(const vector<bool,Allocator>& x); template <class InputIterator> void assign(InputIterator first, InputIterator last); void assign(size_type n, const T& t); allocator_type get_allocator() const;
// iterators: iterator begin(); const_iterator begin() const; iterator end(); const_iterator end() const; reverse_iterator rbegin(); const_reverse_iterator rbegin() const; reverse_iterator rend(); const_reverse_iterator rend() const; // capacity: size_type size() const; size_type max_size() const; void resize(size_type sz, bool c = false); size_type capacity() const; bool empty() const; void reserve(size_type n); // element access: reference operator[](size_type n); const_reference operator[](size_type n) const; const_reference at(size_type n) const; reference at(size_type n); reference front(); const_reference front() const; reference back(); const_reference back() const; // modifiers: void push_back(const bool& x); void pop_back(); iterator insert(iterator position, const bool& x); void insert (iterator position, size_type n, const bool& x); template <class InputIterator> void insert(iterator position, InputIterator first, InputIterator last); iterator erase(iterator position); iterator erase(iterator first, iterator last); void swap(vector<bool,Allocator>&); static void swap(reference x, reference y); void flip(); // flips all bits void clear();
}; template <class Allocator> bool operator==(const vector<bool,Allocator>& x, const vector<bool,Allocator>& y); template <class Allocator> bool operator< (const vector<bool,Allocator>& x, const vector<bool,Allocator>& y); template <class Allocator> bool operator!=(const vector<bool,Allocator>& x, const vector<bool,Allocator>& y); template <class Allocator> bool operator> (const vector<bool,Allocator>& x, const vector<bool,Allocator>& y); template <class Allocator> bool operator>=(const vector<bool,Allocator>& x, const vector<bool,Allocator>& y); template <class Allocator> bool operator<=(const vector<bool,Allocator>& x, const vector<bool,Allocator>& y); // specialized algorithms: template <class Allocator> void swap(vector<bool,Allocator>& x, vector<bool,Allocator>& y); }
2 reference is a class that simulates the behavior of references of a single bit in vector<bool>.
1 Headers <map> and <set>: Header <map> synopsis
template <class Key, class T, class Compare = less<Key>,namespace std { template <class Key, class T, class Compare = less<Key>, class Allocator = allocator<pair<const Key, T> > > class map; template <class Key, class T, class Compare, class Allocator> bool operator==(const map<Key,T,Compare,Allocator>& x, const map<Key,T,Compare,Allocator>& y); template <class Key, class T, class Compare, class Allocator> bool operator< (const map<Key,T,Compare,Allocator>& x, const map<Key,T,Compare,Allocator>& y); template <class Key, class T, class Compare, class Allocator> bool operator!=(const map<Key,T,Compare,Allocator>& x, const map<Key,T,Compare,Allocator>& y); template <class Key, class T, class Compare, class Allocator> bool operator> (const map<Key,T,Compare,Allocator>& x, const map<Key,T,Compare,Allocator>& y); template <class Key, class T, class Compare, class Allocator> bool operator>=(const map<Key,T,Compare,Allocator>& x, const map<Key,T,Compare,Allocator>& y); template <class Key, class T, class Compare, class Allocator> bool operator<=(const map<Key,T,Compare,Allocator>& x, const map<Key,T,Compare,Allocator>& y); template <class Key, class T, class Compare, class Allocator> void swap(map<Key,T,Compare,Allocator>& x, map<Key,T,Compare,Allocator>& y);
class Allocator = allocator<pair<const Key, T> > >
template <class Key, class T, class Compare, class Allocator>class multimap;
template <class Key, class T, class Compare, class Allocator>bool operator==(const multimap<Key,T,Compare,Allocator>& x, const multimap<Key,T,Compare,Allocator>& y);
template <class Key, class T, class Compare, class Allocator>bool operator< (const multimap<Key,T,Compare,Allocator>& x, const multimap<Key,T,Compare,Allocator>& y);
template <class Key, class T, class Compare, class Allocator>bool operator!=(const multimap<Key,T,Compare,Allocator>& x, const multimap<Key,T,Compare,Allocator>& y);
template <class Key, class T, class Compare, class Allocator>bool operator> (const multimap<Key,T,Compare,Allocator>& x, const multimap<Key,T,Compare,Allocator>& y);
template <class Key, class T, class Compare, class Allocator>bool operator>=(const multimap<Key,T,Compare,Allocator>& x, const multimap<Key,T,Compare,Allocator>& y);
template <class Key, class T, class Compare, class Allocator>bool operator<=(const multimap<Key,T,Compare,Allocator>& x, const multimap<Key,T,Compare,Allocator>& y);
} Header <set> synopsisvoid swap(multimap<Key,T,Compare,Allocator>& x, multimap<Key,T,Compare,Allocator>& y);
namespace std { template <class Key, class Compare = less<Key>, class Allocator = allocator<Key> > class set; template <class Key, class Compare, class Allocator> bool operator==(const set<Key,Compare,Allocator>& x, const set<Key,Compare,Allocator>& y); template <class Key, class Compare, class Allocator> bool operator< (const set<Key,Compare,Allocator>& x, const set<Key,Compare,Allocator>& y); template <class Key, class Compare, class Allocator> bool operator!=(const set<Key,Compare,Allocator>& x, const set<Key,Compare,Allocator>& y); template <class Key, class Compare, class Allocator> bool operator> (const set<Key,Compare,Allocator>& x, const set<Key,Compare,Allocator>& y); template <class Key, class Compare, class Allocator> bool operator>=(const set<Key,Compare,Allocator>& x, const set<Key,Compare,Allocator>& y); template <class Key, class Compare, class Allocator> bool operator<=(const set<Key,Compare,Allocator>& x, const set<Key,Compare,Allocator>& y); template <class Key, class Compare, class Allocator> void swap(set<Key,Compare,Allocator>& x, set<Key,Compare,Allocator>& y); template <class Key, class Compare = less<Key>, class Allocator = allocator<Key> > class multiset; template <class Key, class Compare, class Allocator> bool operator==(const multiset<Key,Compare,Allocator>& x, const multiset<Key,Compare,Allocator>& y); template <class Key, class Compare, class Allocator> bool operator< (const multiset<Key,Compare,Allocator>& x, const multiset<Key,Compare,Allocator>& y); template <class Key, class Compare, class Allocator> bool operator!=(const multiset<Key,Compare,Allocator>& x, const multiset<Key,Compare,Allocator>& y); template <class Key, class Compare, class Allocator> bool operator> (const multiset<Key,Compare,Allocator>& x, const multiset<Key,Compare,Allocator>& y); template <class Key, class Compare, class Allocator> bool operator>=(const multiset<Key,Compare,Allocator>& x, const multiset<Key,Compare,Allocator>& y); template <class Key, class Compare, class Allocator> bool operator<=(const multiset<Key,Compare,Allocator>& x, const multiset<Key,Compare,Allocator>& y); template <class Key, class Compare, class Allocator> void swap(multiset<Key,Compare,Allocator>& x, multiset<Key,Compare,Allocator>& y); }
1 A map is a kind of associative container that supports unique keys (contains at most one of each key value) and provides for fast retrieval of values of another type T based on the keys. Map supports bidirectional iterators.
2 A map satisfies all of the requirements of a container and of a reversible container (23.1) and of an associative container (23.1.2). A map also provides most operations described in (23.1.2) for unique keys. This means that a map supports the a_uniq operations in (23.1.2) but not the a_eq operations. For a map<Key,T> the key_type is Key and the value_type is pair<const Key,T>. Descriptions are provided here only for operations on map that are not described in one of those tables or for operations where there is additional semantic information.
class value_comparenamespace std { template <class Key, class T, class Compare = less<Key>, class Allocator = allocator<pair<const Key, T> > > class map { public: // types: typedef Key key_type; typedef T mapped_type; typedef pair<const Key, T> value_type; typedef Compare key_compare; typedef Allocator allocator_type; typedef typename Allocator::reference reference; typedef typename Allocator::const_reference const_reference; typedef implementation defined iterator; // See 23.1 typedef implementation defined const_iterator; // See 23.1 typedef implementation defined size_type; // See 23.1 typedef implementation defined difference_type;// See 23.1 typedef typename Allocator::pointer pointer; typedef typename Allocator::const_pointer const_pointer; typedef std::reverse_iterator<iterator> reverse_iterator; typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
friend class map; protected:: public binary_function<value_type,value_type,bool> {
public:Compare comp; value_compare(Compare c) : comp(c) {}
}; // 23.3.1.1 construct/copy/destroy: explicit map(const Compare& comp = Compare(),bool operator()(const value_type& x, const value_type& y) const { return comp(x.first, y.first); }
template <class InputIterator>const Allocator& = Allocator());
map(const map<Key,T,Compare,Allocator>& x); ~map(); map<Key,T,Compare,Allocator>&map(InputIterator first, InputIterator last, const Compare& comp = Compare(), const Allocator& = Allocator());
// iterators: iterator begin(); const_iterator begin() const; iterator end(); const_iterator end() const; reverse_iterator rbegin(); const_reverse_iterator rbegin() const; reverse_iterator rend(); const_reverse_iterator rend() const; // capacity: bool empty() const; size_type size() const; size_type max_size() const; // 23.3.1.2 element access: T& operator[](const key_type& x); // modifiers: pair<iterator, bool> insert(const value_type& x); iterator insert(iterator position, const value_type& x); template <class InputIterator>operator=(const map<Key,T,Compare,Allocator>& x);
void erase(iterator position); size_type erase(const key_type& x); void erase(iterator first, iterator last); void swap(map<Key,T,Compare,Allocator>&); void clear(); // observers: key_compare key_comp() const; value_compare value_comp() const;void insert(InputIterator first, InputIterator last);
// 23.3.1.3 map operations: iterator find(const key_type& x); const_iterator find(const key_type& x) const; size_type count(const key_type& x) const; iterator lower_bound(const key_type& x); const_iterator lower_bound(const key_type& x) const; iterator upper_bound(const key_type& x); const_iterator upper_bound(const key_type& x) const; pair<iterator,iterator> equal_range(const key_type& x); pair<const_iterator,const_iterator> equal_range(const key_type& x) const;
}; template <class Key, class T, class Compare, class Allocator> bool operator==(const map<Key,T,Compare,Allocator>& x, const map<Key,T,Compare,Allocator>& y); template <class Key, class T, class Compare, class Allocator> bool operator< (const map<Key,T,Compare,Allocator>& x, const map<Key,T,Compare,Allocator>& y); template <class Key, class T, class Compare, class Allocator> bool operator!=(const map<Key,T,Compare,Allocator>& x, const map<Key,T,Compare,Allocator>& y); template <class Key, class T, class Compare, class Allocator> bool operator> (const map<Key,T,Compare,Allocator>& x, const map<Key,T,Compare,Allocator>& y); template <class Key, class T, class Compare, class Allocator> bool operator>=(const map<Key,T,Compare,Allocator>& x, const map<Key,T,Compare,Allocator>& y); template <class Key, class T, class Compare, class Allocator> bool operator<=(const map<Key,T,Compare,Allocator>& x, const map<Key,T,Compare,Allocator>& y); // specialized algorithms: template <class Key, class T, class Compare, class Allocator> void swap(map<Key,T,Compare,Allocator>& x, map<Key,T,Compare,Allocator>& y);
}
explicit map(const Compare& comp = Compare(), const Allocator& = Allocator());
1 Effects: Constructs an empty map using the specified comparison object and allocator.
2 Complexity: Constant.
template <class InputIterator> map(InputIterator first, InputIterator last, const Compare& comp = Compare(), const Allocator& = Allocator());
3 Effects: Constructs an empty map using the specified comparison object and allocator, and inserts elements from the range [first, last).
4 Complexity: Linear in N if the range [first, last) is already sorted using comp and otherwise N log N, where N is last - first.
T& operator[](const key_type& x);
1 Returns: (*((insert(make_pair(x, T()))).first)).second.
iterator find(const key_type& x); const_iterator find(const key_type& x) const; iterator lower_bound(const key_type& x); const_iterator lower_bound(const key_type& x) const; iterator upper_bound(const key_type& x); const_iterator upper_bound(const key_type &x) const; pair<iterator, iterator> equal_range(const_key_type &x); pair<const_iterator, const_iterator> equal_range(const key_type& x) const;
1 The find, lower_bound, upper_bound and equal_range member functions each have two versions, one const and the other non-const. In each case the behavior of the two functions is identical except that the const version returns a const_iterator and the non-const version an iterator (23.1.2).
template <class Key, class T, class Compare, class Allocator> void swap(map<Key,T,Compare,Allocator>& x, map<Key,T,Compare,Allocator>& y);
1 Effects:
x.swap(y);
1 A multimap is a kind of associative container that supports equivalent keys (possibly containing multiple copies of the same key value) and provides for fast retrieval of values of another type T based on the keys. Multimap supports bidirectional iterators.
2 A multimap satisfies all of the requirements of a container and of a reversible container (23.1) and of an associative container (23.1.2). A multimap also provides most operations described in (23.1.2) for equal keys. This means that a multimap supports the a_eq operations in (23.1.2) but not the a_uniq operations. For a multimap<Key,T> the key_type is Key and the value_type is pair<const Key,T>. Descriptions are provided here only for operations on multimap that are not described in one of those tables or for operations where there is additional semantic information. namespace std {
template <class Key, class T, class Compare = less<Key>, class Allocator = allocator<pair<const Key, T> > > class multimap { public: // types: typedef Key key_type; typedef T mapped_type; typedef pair<const Key,T> value_type; typedef Compare key_compare; typedef Allocator allocator_type; typedef typename Allocator::reference reference; typedef typename Allocator::const_reference const_reference; typedef implementation defined iterator; // See 23.1 typedef implementation defined const_iterator; // See 23.1 typedef implementation defined size_type; // See 23.1 typedef implementation defined difference_type;// See 23.1 typedef typename Allocator::pointer pointer; typedef typename Allocator::const_pointer const_pointer; typedef std::reverse_iterator<iterator> reverse_iterator; typedef std::reverse_iterator<const_iterator> const_reverse_iterator; class value_compare : public binary_function<value_type,value_type,bool> { friend class multimap; protected: Compare comp; value_compare(Compare c) : comp(c) {} public: bool operator()(const value_type& x, const value_type& y) const { return comp(x.first, y.first); } }; // construct/copy/destroy: explicit multimap(const Compare& comp = Compare(), const Allocator& = Allocator()); template <class InputIterator> multimap(InputIterator first, InputIterator last, const Compare& comp = Compare(), const Allocator& = Allocator()); multimap(const multimap<Key,T,Compare,Allocator>& x); ~multimap(); multimap<Key,T,Compare,Allocator>& operator=(const multimap<Key,T,Compare,Allocator>& x); allocator_type get_allocator() const; // iterators: iterator begin(); const_iterator begin() const; iterator end(); const_iterator end() const; reverse_iterator rbegin(); const_reverse_iterator rbegin() const; reverse_iterator rend(); const_reverse_iterator rend() const; // capacity: bool empty() const; size_type size() const; size_type max_size() const; // modifiers: iterator insert(const value_type& x); iterator insert(iterator position, const value_type& x); template <class InputIterator> void insert(InputIterator first, InputIterator last); void erase(iterator position); size_type erase(const key_type& x); void erase(iterator first, iterator last); void swap(multimap<Key,T,Compare,Allocator>&); void clear(); // observers: key_compare key_comp() const; value_compare value_comp() const; // map operations: iterator find(const key_type& x); const_iterator find(const key_type& x) const; size_type count(const key_type& x) const; iterator lower_bound(const key_type& x); const_iterator lower_bound(const key_type& x) const; iterator upper_bound(const key_type& x); const_iterator upper_bound(const key_type& x) const; pair<iterator,iterator> equal_range(const key_type& x); pair<const_iterator,const_iterator> equal_range(const key_type& x) const; }; template <class Key, class T, class Compare, class Allocator> bool operator==(const multimap<Key,T,Compare,Allocator>& x, const multimap<Key,T,Compare,Allocator>& y); template <class Key, class T, class Compare, class Allocator> bool operator< (const multimap<Key,T,Compare,Allocator>& x, const multimap<Key,T,Compare,Allocator>& y); template <class Key, class T, class Compare, class Allocator> bool operator!=(const multimap<Key,T,Compare,Allocator>& x, const multimap<Key,T,Compare,Allocator>& y); template <class Key, class T, class Compare, class Allocator> bool operator> (const multimap<Key,T,Compare,Allocator>& x, const multimap<Key,T,Compare,Allocator>& y); template <class Key, class T, class Compare, class Allocator> bool operator>=(const multimap<Key,T,Compare,Allocator>& x, const multimap<Key,T,Compare,Allocator>& y); template <class Key, class T, class Compare, class Allocator> bool operator<=(const multimap<Key,T,Compare,Allocator>& x, const multimap<Key,T,Compare,Allocator>& y); // specialized algorithms: template <class Key, class T, class Compare, class Allocator> void swap(multimap<Key,T,Compare,Allocator>& x, multimap<Key,T,Compare,Allocator>& y); }
explicit multimap(const Compare& comp = Compare(), const Allocator& = Allocator());
1 Effects: Constructs an empty multimap using the specified comparison object and allocator.
2 Complexity: Constant.
template <class InputIterator> multimap(InputIterator first, InputIterator last, const Compare& comp = Compare(), const Allocator& = Allocator()0;
3 Effects: Constructs an empty multimap using the specified comparison object and allocator, and inserts elements from the range [first, last).
4 Complexity: Linear in N if the range [first, last). is already sorted using comp and otherwise N log N, where N is last - first.
pair<const_iterator, const_iterator>equal_range(const key_type& x);
equal_range(const_key_type& x) const;
1 The find, lower_bound, upper_bound, and equal_range member functions each have two versions, one const and one non-const. In each case the behavior of the two versions is identical except that the const version returns a const_iterator and the non-const version an iterator(_lib.associative.reqmts).
template <class Key, class T, class Compare, class Allocator> void swap(multimap<Key,T,Compare,Allocator>& x, multimap<Key,T,Compare,Allocator>& y);
1 Effects:
x.swap(y);
1 A set is a kind of associative container that supports unique keys (contains at most one of each key value) and provides for fast retrieval of the keys themselves. Set supports bidirectional iterators.
2 A set satisfies all of the requirements of a container and of a reversible container (23.1), and of an associative container (23.1.2). A set also provides most operations described in (23.1.2) for unique keys. This means that a set supports the a_uniq operations in (23.1.2) but not the a_eq operations. For a set<Key> both the key_type and value_type are Key. Descriptions are provided here only for operations on set that are not described in one of these tables and for operations where there is additional semantic information.
namespace std { template <class Key, class Compare = less<Key>, class Allocator = allocator<Key> > class set { public: // types: typedef Key key_type; typedef Key value_type; typedef Compare key_compare; typedef Compare value_compare; typedef Allocator allocator_type; typedef typename Allocator::reference reference; typedef typename Allocator::const_reference const_reference; typedef implementation defined iterator; // See 23.1 typedef implementation defined const_iterator; // See 23.1 typedef implementation defined size_type; // See 23.1 typedef implementation defined difference_type;// See 23.1 typedef typename Allocator::pointer pointer; typedef typename Allocator::const_pointer const_pointer; typedef std::reverse_iterator<iterator> reverse_iterator; typedef std::reverse_iterator<const_iterator> const_reverse_iterator; // 23.3.3.1 construct/copy/destroy: explicit set(const Compare& comp = Compare(), const Allocator& = Allocator()); template <class InputIterator> set(InputIterator first, InputIterator last, const Compare& comp = Compare(), const Allocator& = Allocator()); set(const set<Key,Compare,Allocator>& x); ~set(); set<Key,Compare,Allocator>& operator= (const set<Key,Compare,Allocator>& x); allocator_type get_allocator() const; // iterators: iterator begin(); const_iterator begin() const; iterator end(); const_iterator end() const; reverse_iterator rbegin(); const_reverse_iterator rbegin() const; reverse_iterator rend(); const_reverse_iterator rend() const; // capacity: bool empty() const; size_type size() const; size_type max_size() const; // modifiers: pair<iterator,bool> insert(const value_type& x); iterator insert(iterator position, const value_type& x); template <class InputIterator> void insert(InputIterator first, InputIterator last); void erase(iterator position); size_type erase(const key_type& x); void erase(iterator first, iterator last); void swap(set<Key,Compare,Allocator>&); void clear(); // observers: key_compare key_comp() const; value_compare value_comp() const; // set operations: iterator find(const key_type& x) const; size_type count(const key_type& x) const; iterator lower_bound(const key_type& x) const; iterator upper_bound(const key_type& x) const; pair<iterator,iterator> equal_range(const key_type& x) const; }; template <class Key, class Compare, class Allocator> bool operator==(const set<Key,Compare,Allocator>& x, const set<Key,Compare,Allocator>& y); template <class Key, class Compare, class Allocator> bool operator< (const set<Key,Compare,Allocator>& x, const set<Key,Compare,Allocator>& y); template <class Key, class Compare, class Allocator> bool operator!=(const set<Key,Compare,Allocator>& x, const set<Key,Compare,Allocator>& y); template <class Key, class Compare, class Allocator> bool operator> (const set<Key,Compare,Allocator>& x, const set<Key,Compare,Allocator>& y); template <class Key, class Compare, class Allocator> bool operator>=(const set<Key,Compare,Allocator>& x, const set<Key,Compare,Allocator>& y); template <class Key, class Compare, class Allocator> bool operator<=(const set<Key,Compare,Allocator>& x, const set<Key,Compare,Allocator>& y); // specialized algorithms: template <class Key, class Compare, class Allocator> void swap(set<Key,Compare,Allocator>& x, set<Key,Compare,Allocator>& y);
}
explicit set(const Compare& comp = Compare(), const Allocator& = Allocator());
1 Effects: Constructs an empty set using the specified comparison objects and allocator.
2 Complexity: Constant.
template <class InputIterator> set(InputIterator first, last, const Compare& comp = Compare(), const Allocator& = Allocator());
3 Effects: Constructs an empty set using the specified comparison object and allocator, and inserts elements from the range [first, last).
4 Complexity: Linear in N if the range [first, last) is already sorted using comp and otherwise N log N, where N is last - first.
void swap(set<Key,Compare,Allocator>& x, set<Key,Compare,Allocator>& y);
1 Effects:
x.swap(y);
1 A multiset is a kind of associative container that supports equivalent keys (possibly contains multiple copies of the same key value) and provides for fast retrieval of the keys themselves. Multiset supports bidirectional iterators.
2 A multiset satisfies all of the requirements of a container and of a reversible container (23.1), and of an associative container (23.1.2). multiset also provides most operations described in (23.1.2) for duplicate keys. This means that a multiset supports the a_eq operations in (23.1.2) but not the a_uniq operations. For a multiset<Key> both the key_type and value_type are Key. Descriptions are provided here only for operations on multiset that are not described in one of these tables and for operations where there is additional semantic information.
// construct/copy/destroy: explicit multiset(const Compare& comp = Compare(),namespace std { template <class Key, class Compare = less<Key>, class Allocator = allocator<Key> > class multiset { public: // types: typedef Key key_type; typedef Key value_type; typedef Compare key_compare; typedef Compare value_compare; typedef Allocator allocator_type; typedef typename Allocator::reference reference; typedef typename Allocator::const_reference const_reference; typedef implementation defined iterator; // See 23.1 typedef implementation defined const_iterator; // See 23.1 typedef implementation defined size_type; // See 23.1 typedef implementation defined difference_type;// See 23.1 typedef typename Allocator::pointer pointer; typedef typename Allocator::const_pointer const_pointer; typedef std::reverse_iterator<iterator> reverse_iterator; typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
template <class InputIterator>const Allocator& = Allocator());
multiset(const multiset<Key,Compare,Allocator>& x); ~multiset(); multiset<Key,Compare,Allocator>&multiset(InputIterator first, InputIterator last, const Compare& comp = Compare(), const Allocator& = Allocator());
allocator_type get_allocator() const; // iterators: iterator begin(); const_iterator begin() const; iterator end(); const_iterator end() const; reverse_iterator rbegin(); const_reverse_iterator rbegin() const; reverse_iterator rend(); const_reverse_iterator rend() const; // capacity: bool empty() const; size_type size() const; size_type max_size() const; // modifiers: iterator insert(const value_type& x); iterator insert(iterator position, const value_type& x); template <class InputIterator>operator=(const multiset<Key,Compare,Allocator>& x);
void erase(iterator position); size_type erase(const key_type& x); void erase(iterator first, iterator last); void swap(multiset<Key,Compare,Allocator>&); void clear(); // observers: key_compare key_comp() const; value_compare value_comp() const; // set operations: iterator find(const key_type& x) const; size_type count(const key_type& x) const; iterator lower_bound(const key_type& x) const; iterator upper_bound(const key_type& x) const; pair<iterator,iterator> equal_range(const key_type& x) const; };void insert(InputIterator first, InputIterator last);
template <class Key, class Compare, class Allocator> bool operator==(const multiset<Key,Compare,Allocator>& x, const multiset<Key,Compare,Allocator>& y); template <class Key, class Compare, class Allocator> bool operator< (const multiset<Key,Compare,Allocator>& x, const multiset<Key,Compare,Allocator>& y); template <class Key, class Compare, class Allocator> bool operator!=(const multiset<Key,Compare,Allocator>& x, const multiset<Key,Compare,Allocator>& y); template <class Key, class Compare, class Allocator> bool operator> (const multiset<Key,Compare,Allocator>& x, const multiset<Key,Compare,Allocator>& y); template <class Key, class Compare, class Allocator> bool operator>=(const multiset<Key,Compare,Allocator>& x, const multiset<Key,Compare,Allocator>& y); template <class Key, class Compare, class Allocator> bool operator<=(const multiset<Key,Compare,Allocator>& x, const multiset<Key,Compare,Allocator>& y); // specialized algorithms: template <class Key, class Compare, class Allocator> void swap(multiset<Key,Compare,Allocator>& x, multiset<Key,Compare,Allocator>& y);
}
explicit multiset(const Compare& comp = Compare(), const Allocator& = Allocator());
1 Effects: Constructs an empty set using the specified comparison object and allocator.
2 Complexity: Constant.
template <class InputIterator> multiset(InputIterator first, last, const Compare& comp = Compare(), const Allocator& = Allocator());
3 Effects: Constructs an empty multiset using the specified comparison object and allocator, and inserts elements from the range [first, last).
4 Complexity: Linear in N if the range [first, last) is already sorted using comp and otherwise N log N, where N is last - first.
template <class Key, class Compare, class Allocator> void swap(multiset<Key,Compare,Allocator>& x, multiset<Key,Compare,Allocator>& y);
1 Effects:
x.swap(y);
#include <cstddef> // for size_t #include <string> #include <stdexcept> // for invalid_argument, // out_of_range, overflow_error #include <iosfwd> // for istream, ostream namespace std { template <size_t N> class bitset; // 23.3.5.3 bitset operations: template <size_t N> bitset<N> operator&(const bitset<N>&, const bitset<N>&); template <size_t N> bitset<N> operator|(const bitset<N>&, const bitset<N>&); template <size_t N> bitset<N> operator^(const bitset<N>&, const bitset<N>&); template <class charT, class traits, size_t N> basic_istream<charT, traits>& operator>>(basic_istream<charT, traits>& is, bitset<N>& x); template <class charT, class traits, size_t N> basic_ostream<charT, traits>& operator<<(basic_ostream<charT, traits>& os, const bitset<N>& x); }
1 The header <bitset> defines a template class and several related functions for representing and manipulating fixed-size sequences of bits.
namespace std { template<size_t N> class bitset { public: // bit reference: class reference { friend class bitset; reference(); public: ~reference(); reference& operator=(bool x); // for b[i] = x; reference& operator=(const reference&); // for b[i] = b[j]; bool operator~() const; // flips the bit operator bool() const; // for x = b[i]; reference& flip(); // for b[i].flip(); }; // 23.3.5.1 constructors: bitset(); bitset(unsigned long val); template<class charT, class traits, class Allocator> explicit bitset( const basic_string<charT,traits,Allocator>& str, typename basic_string<charT,traits,Allocator>::size_type pos = 0, typename basic_string<charT,traits,Allocator>::size_type n = basic_string<charT,traits,Allocator>::npos); // 23.3.5.2 bitset operations: bitset<N>& operator&=(const bitset<N>& rhs); bitset<N>& operator|=(const bitset<N>& rhs); bitset<N>& operator^=(const bitset<N>& rhs); bitset<N>& operator<<=(size_t pos); bitset<N>& operator>>=(size_t pos); bitset<N>& set(); bitset<N>& set(size_t pos, int val = true); bitset<N>& reset(); bitset<N>& reset(size_t pos); bitset<N> operator~() const; bitset<N>& flip(); bitset<N>& flip(size_t pos); // element access: reference operator[](size_t pos); // for b[i]; unsigned long to_ulong() const; template <class charT, class traits, class Allocator> basic_string<charT, traits, Allocator> to_string() const; size_t count() const; size_t size() const; bool operator==(const bitset<N>& rhs) const; bool operator!=(const bitset<N>& rhs) const; bool test(size_t pos) const; bool any() const; bool none() const; bitset<N> operator<<(size_t pos) const; bitset<N> operator>>(size_t pos) const; }; }
2 The template class bitset<N> describes an object that can store a sequence consisting of a fixed number of bits, N.
3 Each bit represents either the value zero (reset) or one (set). To toggle a bit is to change the value zero to one, or the value one to zero. Each bit has a non-negative position pos. When converting between an object of class bitset<N> and a value of some integral type, bit position pos corresponds to the bit value 1 << pos. The integral value corresponding to two or more bits is the sum of their bit values.
4 The functions described in this subclause can report three kinds of errors, each associated with a distinct exception:
bitset();
1 Effects: Constructs an object of class bitset<N>, initializing all bits to zero.
bitset(unsigned long val);
2 Effects: Constructs an object of class bitset<N>, initializing the first M bit positions to the corresponding bit values in val. M is the smaller of N and the value CHAR_BIT * sizeof (unsigned long).249) If M < N, remaining bit positions are initialized to zero.
template <class charT, class traits, class Allocator> explicit bitset(const basic_string<charT, traits, Allocator>& str, typename basic_string<charT, traits, Allocator>::size_type pos = 0, typename basic_string<charT, traits, Allocator>::size_type n = basic_string<charT, traits, Allocator>::npos);
3 Requires: pos <= str.size().
4 Throws: out_of_range if pos > str.size().
5 Effects: Determines the effective length rlen of the initializing string as the smaller of n and str.size() - pos. The function then throws invalid_argument if any of the rlen characters in str beginning at position pos is other than 0 or 1. Otherwise, the function constructs an object of class bitset<N>, initializing the first M bit positions to values determined from the corresponding characters in the string str. M is the smaller of N and rlen.
6 An element of the constructed string has value zero if the corresponding character in str, beginning at position pos, is 0. Otherwise, the element has the value one. Character position pos + M - 1 corresponds to bit position zero. Subsequent decreasing character positions correspond to increasing bit positions.
7 If M < N, remaining bit positions are initialized to zero.
249) The macro CHAR_BIT is defined in <climits> (18.2). [back to text]
bitset<N>& operator&=(const bitset<N>& rhs);
1 Effects: Clears each bit in *this for which the corresponding bit in rhs is clear, and leaves all other bits unchanged.
2 Returns: *this.
bitset<N>& operator|=(const bitset<N>& rhs);
3 Effects: Sets each bit in *this for which the corresponding bit in rhs is set, and leaves all other bits unchanged.
4 Returns: *this.
bitset<N>& operator^=(const bitset<N>& rhs);
5 Effects: Toggles each bit in *this for which the corresponding bit in rhs is set, and leaves all other bits unchanged.
6 Returns: *this.
bitset<N>& operator<<=(size_t pos);
7 Effects: Replaces each bit at position I in *this with a value determined as follows:
8 Returns: *this.
bitset<N>& operator>>=(size_t pos);
9 Effects: Replaces each bit at position I in *this with a value determined as follows:
10 Returns: *this.
bitset<N>& set();
11 Effects: Sets all bits in *this.
12 Returns: *this.
bitset<N>& set(size_t pos, int val = 1);
13 Requires: pos is valid
14 Throws: out_of_range if pos does not correspond to a valid bit position.
15 Effects: Stores a new value in the bit at position pos in *this. If val is nonzero, the stored value is one, otherwise it is zero.
16 Returns: *this.
bitset<N>& reset();
17 Effects: Resets all bits in *this.
18 Returns: *this.
bitset<N>& reset(size_t pos);
19 Requires: pos is valid
20 Throws: out_of_range if pos does not correspond to a valid bit position.
21 Effects: Resets the bit at position pos in *this.
22 Returns: *this.
bitset<N> operator~() const;
23 Effects: Constructs an object x of class bitset<N> and initializes it with *this.
24 Returns: x.flip().
bitset<N>& flip();
25 Effects: Toggles all bits in *this.
26 Returns: *this.
bitset<N>& flip(size_t pos);
27 Requires: pos is valid
28 Throws: out_of_range if pos does not correspond to a valid bit position.
29 Effects: Toggles the bit at position pos in *this.
30 Returns: *this.
unsigned long to_ulong() const;
31 Throws: overflow_error if the integral value x corresponding to the bits in *this cannot be represented as type unsigned long.
32 Returns: x. template <class charT, class traits, class Allocator> basic_string<charT, traits, Allocator> to_string() const;
33 Effects: Constructs a string object of the appropriate type and initializes it to a string of length N characters. Each character is determined by the value of its corresponding bit position in *this. Character position N - 1 corresponds to bit position zero. Subsequent decreasing character positions correspond to increasing bit positions. Bit value zero becomes the character 0, bit value one becomes the character 1.
34 Returns: The created object. size_t count() const;
35 Returns: A count of the number of bits set in *this. size_t size() const;
36 Returns: N. bool operator==(const bitset<N>& rhs) const;
37 Returns: A nonzero value if the value of each bit in *this equals the value of the corresponding bit in rhs. bool operator!=(const bitset<N>& rhs) const;
38 Returns: A nonzero value if !(*this == rhs). bool test(size_t pos) const;
39 Requires: pos is valid
40 Throws: out_of_range if pos does not correspond to a valid bit position.
41 Returns: true if the bit at position pos in *this has the value one. bool any() const;
42 Returns: true if any bit in *this is one. bool none() const;
43 Returns: true if no bit in *this is one. bitset<N> operator<<(size_t pos) const;
44 Returns: bitset<N>(*this) <<= pos. bitset<N> operator>>(size_t pos) const;
45 Returns: bitset<N>(*this) >>= pos.
1 Returns: bitset<N>(lhs) &= rhs. bitset<N> operator|(const bitset<N>& lhs, const bitset<N>& rhs);
2 Returns: bitset<N>(lhs) |= rhs.
bitset<N> operator^(const bitset<N>& lhs, const bitset<N>& rhs);
3 Returns: bitset<N>(lhs) ^= rhs.
template <class charT, class traits, size_t N> basic_istream<charT, traits>& operator>>(basic_istream<charT, traits>& is, bitset<N>& x);
4 A formatted input function (27.6.1.2).
5 Effects: Extracts up to N (single-byte) characters from is. Stores these characters in a temporary object
extracted and stored until any of the following occurs:str of type string, then evaluates the expression x = bitset<N>(str). Characters are
6 If no characters are stored in str, calls is.setstate(ios::failbit) (which may throw ios_base::failure (27.4.4.3).
7 Returns: is.
template <class charT, class traits, size_t N> basic_ostream<charT, traits>& operator<<(basic_ostream<charT, traits>& os, const bitset<N>& x);
8 Returns: os << x.template to_string<charT,traits,allocator<charT> >() (27.6.2.5).